留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

−35 低温下珠光体/贝氏体钢轨磨损与滚动接触疲劳行为研究

王泓豪 丁昊昊 汪渊 陈崇木 王文健 周仲荣

王泓豪, 丁昊昊, 汪渊, 陈崇木, 王文健, 周仲荣. −35 ℃低温下珠光体/贝氏体钢轨磨损与滚动接触疲劳行为研究[J]. 钢铁钒钛, 2024, 45(1): 171-176. doi: 10.7513/j.issn.1004-7638.2024.01.025
引用本文: 王泓豪, 丁昊昊, 汪渊, 陈崇木, 王文健, 周仲荣. −35 低温下珠光体/贝氏体钢轨磨损与滚动接触疲劳行为研究[J]. 钢铁钒钛, 2024, 45(1): 171-176. doi: 10.7513/j.issn.1004-7638.2024.01.025
Wang Honghao, Ding Haohao, Wang Yuan, Chen Chongmu, Wang Wenjian, Zhou Zhongrong. Study on rolling wear and rolling contact fatigue behavior of pearlite/bainite rail steels at the low temperature of −35 ℃[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(1): 171-176. doi: 10.7513/j.issn.1004-7638.2024.01.025
Citation: Wang Honghao, Ding Haohao, Wang Yuan, Chen Chongmu, Wang Wenjian, Zhou Zhongrong. Study on rolling wear and rolling contact fatigue behavior of pearlite/bainite rail steels at the low temperature of −35 [J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(1): 171-176. doi: 10.7513/j.issn.1004-7638.2024.01.025

−35 低温下珠光体/贝氏体钢轨磨损与滚动接触疲劳行为研究

doi: 10.7513/j.issn.1004-7638.2024.01.025
基金项目: 国家自然科学基金(52202510, U21A20167)。
详细信息
    作者简介:

    王泓豪,1998年出生,男,博士研究生,主要从事轮轨材料服役损伤评价技术研究,E-mail:whh@my.swjtu.edu.cn

    通讯作者:

    丁昊昊,1988年出生,男,助理研究员、硕导,E-mail:haohao.ding@swjtu.edu.cn

  • 中图分类号: TF76,U213.4

Study on rolling wear and rolling contact fatigue behavior of pearlite/bainite rail steels at the low temperature of −35

  • 摘要: 高寒地区铁路钢轨面临着低温服役环境,低温下钢轨的滚动磨损与损伤行为是影响其服役安全的重要因素。通过轮轨滚动接触模拟试验研究了−35 ℃温度下珠光体(亚共析钢和共析钢)和贝氏体钢轨磨损与滚动接触疲劳(RCF)损伤行为。结果表明,贝氏体钢轨在−35 ℃试验温度下硬化程度较低,导致磨损程度高于珠光体钢轨,珠光体钢轨中亚共析钢轨磨损程度低于共析钢轨;三种钢轨存在不同程度的RCF损伤,疲劳裂纹主要以小角度(<10°)扩展。磨损和RCF存在竞争关系,磨损较小的亚共析钢轨RCF损伤严重,共析钢轨次之,磨损最严重的贝氏体钢轨RCF损伤最轻微。
  • 图  1  钢轨材料微观组织形貌

    Figure  1.  Microstructure of rail steels

    图  2  轮轨滚动接触模拟试验机与低温环境模拟系统示意

    Figure  2.  Schematic diagram of wheel-rail rolling contact simulation testing machine and low temperature environment simulation system

    图  3  −35 ℃温度下轮轨黏着系数和钢轨磨损率

    Figure  3.  (a) Wheel/rail adhesion coefficient and (b) rail wear rate under the temperature of −35 ℃

    图  4  −35 ℃试验温度下钢轨表面损伤形貌

    (a)亚共析钢,OM;(b)共析钢,OM;(c)贝氏体钢,OM;(d)亚共析钢,SEM;(e)共析钢,SEM;(f)贝氏体钢,SEM

    Figure  4.  Surface damage morphology of rail steels at low temperature

    图  5  −35 ℃试验温度下钢轨塑性变形层

    Figure  5.  Plastic deformation layer of rail steels at low temperature

    图  6  −35 ℃试验温度下钢轨次表面硬化情况

    Figure  6.  Hardening of rail steels of sub-surface at low temperature

    图  7  −35 ℃试验温度下的钢轨次表面SEM形貌

    Figure  7.  SEM morphology of subsurface of rail steels at low temperature

    图  8  −35 ℃试验温度下的钢轨裂纹统计

    Figure  8.  Statistics of cracks on rail steels at low temperature

    表  1  钢轨材料性能

    Table  1.   Properties of rail steels

    钢轨材料微观组织含碳量/%硬度(HV0.2
    亚共析钢珠光体+先共析铁素体0.64~0.7377±11
    共析钢珠光体钢0.65~0.77300±9
    贝氏体钢贝氏体铁素体+残余奥氏体+
    马氏体/奥氏体岛
    0.20~0.50368±20
    下载: 导出CSV

    表  2  钢轨近表层硬度

    Table  2.   The hardness at near surface of rail steel

    钢轨材料40 μm深度处硬度(HV0.2硬化率
    亚共析钢6241.66
    共析钢6822.27
    贝氏体钢4561.24
    下载: 导出CSV
  • [1] Stock R, Pippan R. Rail grade dependent damage behaviour - Characteristics and damage formation hypothesis[J]. Wear, 2014, 314: 44-50.
    [2] Zerbst U, Beretta S, Köhler G, et al. Safe life and damage tolerance aspects of railway axles – A review[J]. Engineering Fracture Mechanics, 2013,98:214−271. doi: 10.1016/j.engfracmech.2012.09.029
    [3] Wang W J, Guo H M, Du X, et al. Investigation on the damage mechanism and prevention of heavy-haul railway rail[J]. Engineering Failure Analysis, 2013,35:206−218.
    [4] Wang Y P, Ding H H, Zou Q, et al. Research progress on rolling contact fatigue of railway wheel treads[J]. Surface Technology, 2020,49:120−128.
    [5] Ding H H, Fu Z K, Wang W J, et al. Investigation on the effect of rotational speed on rolling wear and damage behaviors of wheel/rail materials[J]. Wear, 2015,330:563−570.
    [6] Ding H H, He C G, Ma L, et al. Wear mapping and transitions in wheel and rail materials under different contact pressure and sliding velocity conditions[J]. Wear, 2016,352-353:1−8. doi: 10.1016/j.wear.2016.01.017
    [7] Wang W J, Jiang W J, Wang H Y, et al. Experimental study on the wear and damage behavior of different wheel/rail materials[J]. Part F:Journal of Rail and Rapid Transit, 2016,230:3−14. doi: 10.1177/0954409714524566
    [8] Zhang S Y, Spiryagin M, Ding H H, et al. Rail rolling contact fatigue formation and evolution with surface defects[J]. International Journal Fatigue, 2022,158:106762. doi: 10.1016/j.ijfatigue.2022.106762
    [9] Zhang S Y, Spiryagin M, Lin Q, et al. Study on wear and rolling contact fatigue behaviours of defective rail under different slip ratio and contact stress conditions[J]. Tribology International, 2022,169:107491. doi: 10.1016/j.triboint.2022.107491
    [10] Feng Baorui, Wang Yuanqing, Shi Yongjiu. Analysis on CTOD and J integral of rail steel under low temperature[J]. Low Temperature Architecture Technology, 2007,3(3):29−32. (冯宝锐, 王元清, 石永久. 低温下铁路钢轨钢材的断口与弹塑性断裂韧性分析[J]. 低温建筑技术, 2007,3(3):29−32.

    Feng Baorui, Wang Yuanqing, Shi Yongjiu. Analysis on CTOD and J integral of rail steel under low temperature[J]. Low Temperature Architecture Technology, 2007, 03: 29-32
    [11] Feng Baorui, Wang Yuanqing, Shi Yongjiu. Analysis and discussion on the design method for rail fracture-resisting under low temperature[J]. Journal of Railway Science and Engineering, 2009,26(3):15−19. (冯宝锐, 王元清, 石永久. 低温下铁路钢轨抗脆断设计方法分析[J]. 铁道工程学报, 2009,26(3):15−19. doi: 10.3969/j.issn.1006-2106.2009.03.004

    Feng Baorui, Wang Yuanqing, Shi Yongjiu. Analysis and discussion on the design method for rail fracture-resisting under low temperature[J]. Journal of Railway Science and Engineering, 2009, 26(03): 15-19. doi: 10.3969/j.issn.1006-2106.2009.03.004
    [12] Wang Yuanqing, Feng Baorui, Shi Yongjiu. Analysis of fracture toughness properties of rails steel under low temperature conditions[J]. Journal of Railway Science and Engineering, 2007,4(4):1−5. (王元清, 冯宝锐, 石永久. 低温下铁路钢轨断裂韧性分析[J]. 铁道科学与工程学报, 2007,4(4):1−5.

    Wang Yuanqing, Feng Baorui, Shi Yongjiu. Analysis of fracture toughness properties of rails steel under low temperature conditions[J]. Journal of Railway Science and Engineering, 2007, 4(04): 1–5
    [13] Valtonen K, Ratia V, Ramakrishnan K R, et al. Impact wear and mechanical behavior of steels at subzero temperatures[J]. Tribology International, 2019,129:476−493. doi: 10.1016/j.triboint.2018.08.016
    [14] Ma Lei, He Chenggang, Zhao Xiangji, et al. Simulation experiment for rolling wear of wheel/rail materials under low temperature environment[J]. Tribology, 2016,36(1):92−97. (马蕾, 何成刚, 赵相吉, 等. 低温环境下轮轨材料滚动磨损模拟试验研究[J]. 摩擦学学报, 2016,36(1):92−97.

    Ma Lei, He Chenggang, Zhao Xiangji, et al. Simulation experiment for rolling wear of wheel/rail materials under low temperature environment[J]. Tribology, 2016, 36(1): 92–97
    [15] Ma L, Guo J, Liu Q Y, et al. Fatigue crack growth and damage characteristics of high-speed rail at low ambient temperature[J]. Engineering Failure Analysis, 2017,82:802−815. doi: 10.1016/j.engfailanal.2017.07.026
    [16] Ma L, Shi L B, Guo J, et al. On the wear and damage characteristics of rail material under low temperature environment condition[J]. Wear, 2018,394-395:149−158. doi: 10.1016/j.wear.2017.10.011
    [17] Mo Wenfeng. Thermodynamic control of pearlite lamellar sheet spacing and its effect on mechanical properties of steel[J]. Iron Steel Vanadium Titanium, 2021,42(5):175−179. (莫文锋. 珠光体片间距的热力学控制及其对钢力学性能的影响[J]. 钢铁钒钛, 2021,42(5):175−179.

    Mo Wenfeng. Thermodynamic control of pearlite lamellar sheet spacing and its effect on mechanical properties of steel[J]. Iron Steel Vanadium Titanium, 2021, 42(05): 175-179.
    [18] Tang Jianwei. Effect of bainite isothermal time on microstructure and mechanical properties of ultra-high strength cold-rolled transformation induced plasticity steel.[J]. Iron Steel Vanadium Titanium, 2016,37(6):133−136. (唐建伟. 贝氏体等温时间对超高强冷轧相变诱导塑性钢组织性能的影响[J]. 钢铁钒钛, 2016,37(6):133−136. doi: 10.7513/j.issn.1004-7638.2016.06.024

    Tang Jianwei. Effect of bainite isothermal time on microstructure and mechanical properties of ultra-high strength cold-rolled transformation induced plasticity steel. [J]. Iron Steel Vanadium Titanium, 2016, 37(06): 133-136. doi: 10.7513/j.issn.1004-7638.2016.06.024
    [19] Steele R, Reiff R. Rail: it’s behaviour and relationship to total system wear [C]//Pro 2nd Conf on Heavy Haul. Colorado Springs, USA, 1982.
    [20] Shi L B, Ma L, Guo J, et al. Influence of low temperature environment on the adhesion characteristics of wheel-rail contact[J]. Tribology International, 2018,127:59−68. doi: 10.1016/j.triboint.2018.05.037
    [21] Zhou Liang, Guo Lichang, Ding Haohao, et al. Wear and damage evolution behaviours of railway wheel steel in the low temperature environment[J]. Tribology, 2022,42(4):844−853. (周亮, 郭立昌, 丁昊昊, 等. 低温环境下列车车轮材料磨损与损伤演变行为研究[J]. 摩擦学学报, 2022,42(4):844−853.

    Zhou Liang, Guo Lichang, Wang Wenjian, et al. Wear and Damage Evolution Behaviours of Railway Wheel Steel in the Low Temperature Environment[J]. Tribology, 2022, 42(04): 844-853.
    [22] Hu Y, Zhou L, Ding H H, et al. Microstructure evolution of railway pearlitic wheel steels under rolling-sliding contact loading[J]. Tribology International, 2021,154:106685. doi: 10.1016/j.triboint.2020.106685
    [23] Hu Y, Zhou L, Ding H H, et al. Investigation on wear and rolling contact fatigue of wheel-rail materials under various wheel/rail hardness ratio and creepage conditions[J]. Tribology International, 2020,143:106091. doi: 10.1016/j.triboint.2019.106091
    [24] Suh N P. The delamination theory of wear[J]. Wear, 1973,25(1):111−124. doi: 10.1016/0043-1648(73)90125-7
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  21
  • HTML全文浏览量:  7
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-16
  • 刊出日期:  2024-02-29

目录

    /

    返回文章
    返回