留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微量碲对38MnVS非调质钢切削性能影响研究

刘年富 李杰 田钱仁 徐翔宇 付建勋

刘年富, 李杰, 田钱仁, 徐翔宇, 付建勋. 微量碲对38MnVS非调质钢切削性能影响研究[J]. 钢铁钒钛, 2024, 45(1): 182-187. doi: 10.7513/j.issn.1004-7638.2024.01.027
引用本文: 刘年富, 李杰, 田钱仁, 徐翔宇, 付建勋. 微量碲对38MnVS非调质钢切削性能影响研究[J]. 钢铁钒钛, 2024, 45(1): 182-187. doi: 10.7513/j.issn.1004-7638.2024.01.027
Liu Nianfu, Li Jie, Tian Qianren, Xu Xiangyu, Fu Jianxun. Effect of micro-content tellurium on cutting performance of 38MnVS non-quenched and tempered steel[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(1): 182-187. doi: 10.7513/j.issn.1004-7638.2024.01.027
Citation: Liu Nianfu, Li Jie, Tian Qianren, Xu Xiangyu, Fu Jianxun. Effect of micro-content tellurium on cutting performance of 38MnVS non-quenched and tempered steel[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(1): 182-187. doi: 10.7513/j.issn.1004-7638.2024.01.027

微量碲对38MnVS非调质钢切削性能影响研究

doi: 10.7513/j.issn.1004-7638.2024.01.027
基金项目: 国家自然科学基金(项目号:No. 51874195)。
详细信息
    作者简介:

    刘年富,1981年出生,男,博士,主要从事钢铁新材料开发, E-mail:A28285@baosteel.com

    通讯作者:

    付建勋,1969年出生,男,博士,教授, E-mail:fujianxun@shu.edu.cn

  • 中图分类号: TF76,TG142.1

Effect of micro-content tellurium on cutting performance of 38MnVS non-quenched and tempered steel

  • 摘要: 为探讨碲改质对非调质钢切削性能的影响机制,对38MnVS非调质钢进行了加碲的硫化物改质试验,并对比加碲对钢中硫化物形态及切削性能的影响。结果表明,加入微量碲(0.0020%)后钢中硫化物形态显著改善,硫化物长宽比降低;由于加碲后硫化物形态的改善,降低了切削过程中的切削力,减小了刀具的磨损,阻止了积屑瘤的产生,同时改善了工件表面粗糙度,从而改善非调质钢的切削性能。
  • 图  1  硫化物形貌及能谱分析

    (a) AN钢中的硫化物 (b)AM钢中的硫化物

    Figure  1.  Morphology and energy spectrum analysis of sulfide inclusions

    图  2  两种材料基体显微组织

    (a)、(b)AN钢;(c)、(d)AM钢

    Figure  2.  Microstructure of AN and AM steels

    图  3  两种材料不同方向的切削力

    (a) Fx方向力;(b) Fy方向力;(c) Fz方向力;(d) F合力

    Figure  3.  Cutting forces in different directions for the two steels

    图  4  两种材料的刀具磨损位置及EDS分析

    (a)AN钢最外层;(b)AN钢次外层;(c)AM钢最外层;(d)AM钢次外层

    Figure  4.  Tool wear location and EDS analysis for AN and AM steels

    图  5  两种材料表面粗糙度分析情况

    (a) AN钢;(b) AM钢

    Figure  5.  Surface roughness analysis for AN and AM steels

    表  1  38MnVS钢主要化学成分

    Table  1.   Main chemical compositions of 38MnVS6 steel %

    试样CSiMnPSCrVNiTiTe
    AN0.390.561.400.0100.0540.170.130.030.012
    AM0.390.571.420.0100.0540.170.130.030.0130.0023
    下载: 导出CSV

    表  2  非调质钢中硫化物评级情况

    Table  2.   Ratings for sulfide inclusion in NQTS

    试样硫化物级别平均面积/μm2等效直径/μm平均长宽比
    细系粗系
    AN3.02.014.034.014.92
    AM2.51.512.893.612.91
    下载: 导出CSV

    表  3  两种材料铁素体含量及显微硬度测量结果

    Table  3.   Measurement results of ferrite fraction and microhardness of the two steels

    试样铁素体含量/%硬度(HV)
    AN26268.4
    AM28270.2
    下载: 导出CSV

    表  4  不同材料切削力的平均值

    Table  4.   Average value of cutting force for AN and AM steels N

    材料Fx/NFy/N Fz/NF/N
    AN107.1476.8149.4511.0
    AM100.8449.0164.8488.8
    下载: 导出CSV

    表  5  两种材料的车削刀片磨损情况

    Table  5.   Wear of turning inserts for AN and AM steels

    材料刀片磨损长度/mm改善比值/%
    AN3.75-
    AM1.7353.87
    下载: 导出CSV
  • [1] Koplev A, Lystrup A, Vorm T. The cutting process, chips, and cutting forces in machining CFRP[J]. Composites, 1983,14(4):371−376. doi: 10.1016/0010-4361(83)90157-X
    [2] Zheng Guangming, Cheng Xiang, Li Li, et al. Experimental investigation of cutting force, surface roughness and tool wear in high-speed dry milling of AISI 4340 steel[J]. Journal of Mechanical Science and Technology, 2019,33(1):341−349. doi: 10.1007/s12206-018-1236-z
    [3] 李毅. 合金钢切削加工性能的实验研究[D]. 沈阳: 沈阳理工大学, 2020.

    Li Yi. Experimental study on the cutting performance of alloy steel [D]. Shenyang: Shenyang Ligong University, 2020.
    [4] Sonawane G D, Sargade V G. Machinability study of duplex stainless steel 2205 during dry turning[J]. International Journal of Precision Engineering and Manufacturing, 2020,21(5):969−981. doi: 10.1007/s12541-019-00305-8
    [5] Anmark N, Karasev A, Jonsson P G. The effect of different non-metallic inclusions on the machinability of steels[J]. Materials (Basel), 2015,8(2):751−783. doi: 10.3390/ma8020751
    [6] Shen Jingxia, Zheng Yan, Zhang Haixia, et al. Influence of sulfide on cutting properties in sulfur-containing gear steel 20CrMnTiH[J]. Special Steel, 2012,33(3):47−49. (申景霞, 郑艳, 张海霞, 等. 含硫齿轮钢20CrMnTiH中硫化物对切削性能的影响[J]. 特殊钢, 2012,33(3):47−49. doi: 10.3969/j.issn.1003-8620.2012.03.014

    Shen Jingxia, Zheng Yan, Zhang Haixia, et al. Influence of sulfide on cutting properties in sulfur-containing gear steel 20 CrMnTiH[J]. Special Steel, 2012, 33(3): 47-49. doi: 10.3969/j.issn.1003-8620.2012.03.014
    [7] Yaguchi H. Effect of MnS inclusion size on machinabilty of low-carbon, leaded, resulfurized free-machining steel[J]. Journal of Applied Metalworking, 1986,4(3):214−225. doi: 10.1007/BF02833929
    [8] Qiu Bingli, Sui Hui, Che Dehui, et al. Effect of oxygen content and forging ratio on sulfide morphology and cutting performance in free-cutting stainless steel[J]. Journal of Iron and Steel Research, 2021,33(5):418−425. (仇兵利, 随晖, 车德会, 等. 易切削不锈钢中氧含量和锻造比对硫化物形态及切削性能的影响[J]. 钢铁研究学报, 2021,33(5):418−425. doi: 10.13228/j.boyuan.issn1001-0963.20200097

    Qiu Binli, Sui Hui, Che Dehui, et al. Effect of oxygen content and forging ratio on sulfide morphology and cutting performance in free-cutting stainless steel[J]. Journal of Iron and Steel Research, 2021, 33(5): 418-425. doi: 10.13228/j.boyuan.issn1001-0963.20200097
    [9] Dogra M, Sharma V S, Sachdeva A, et al. Tool wear, chip formation and workpiece surface issues in CBN hard turning: a review[J]. International Journal of Precision Engineering and Manufacturing, 2010,11(2):341−358. doi: 10.1007/s12541-010-0040-1
    [10] 宁贵春. 机床切削颤振的检测研究[D]. 石家庄: 石家庄铁道大学, 2019.

    Ning Guichun. Research on the detection of cutting chatter in machine tools[D]. Shijiazhuang: Shijiazhuang Tiedao University, 2019.
    [11] 张宗阳. 基于最小表面磨损率的刀具磨损及加工表面层特性研究[D]. 济南: 山东大学, 2012.

    Zhang Zongyang. Research on the characteristics of tool wear and machined surface layer based on minimum surface wear rate [D]. Jinan: Shandong University, 2012.
    [12] Kuntoğlu M, Sağlam H. Investigation of progressive tool wear for determining of optimized machining parameters in turning[J]. Measurement, 2019,140:427−436. doi: 10.1016/j.measurement.2019.04.022
    [13] Lalwani D I, Mehta N K, Jain P K. Experimental investigations of cutting parameters influence on cutting forces and surface roughness in finish hard turning of MDN250 steel[J]. Journal of Materials Processing Technology, 2008,206(1-3):167−179. doi: 10.1016/j.jmatprotec.2007.12.018
    [14] Xu T D. A kinetic model of non-equilibrium segregation[J]. Journal of Materials Science, 1987,22(2):337−339.
    [15] Jiang L Z, Cui K. Fractal geometry study of correlation between impact toughness of steel and parameters of free cutting phase[J]. Acta Metallurgica Sinica (English Letters), 1992,(4):250−255.
    [16] Atwal K S, Reeder A, Pike T J. The product characteristics and machinability of bloom cast free-cutting steels[J]. Revue De Metallurgie-Cahiers D Informations Techniques, 1989,86(6):531−542.
    [17] Zaslavskii A Y, Gol'dshtein Y E, Shenk R I. Metallography of steel with selenium, tellurium, and lead[J]. Metal Science and Heat Treatment, 1967,9(9):694−696. doi: 10.1007/BF00649055
  • 加载中
图(5) / 表(5)
计量
  • 文章访问数:  27
  • HTML全文浏览量:  8
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-08
  • 刊出日期:  2024-02-29

目录

    /

    返回文章
    返回