Volume 42 Issue 6
Dec.  2021
Turn off MathJax
Article Contents
Chen Yuyong, Wu Jingxi. Research and advances in processing, working, microstructure, properties and industrial application of β-solidifying TiAl alloy[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(6): 1-16. doi: 10.7513/j.issn.1004-7638.2021.06.001
Citation: Chen Yuyong, Wu Jingxi. Research and advances in processing, working, microstructure, properties and industrial application of β-solidifying TiAl alloy[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(6): 1-16. doi: 10.7513/j.issn.1004-7638.2021.06.001

Research and advances in processing, working, microstructure, properties and industrial application of β-solidifying TiAl alloy

doi: 10.7513/j.issn.1004-7638.2021.06.001
  • Received Date: 2021-05-24
  • Publish Date: 2021-12-31
  • The third generation TiAl based intermetallic compounds (β-solidifying TiAl alloy) have a wide application in aerospace, automobile manufacturing and other advanced fields due to their excellent hot workability. However, the introduction of high temperature β phase not only improves the hot deformation capacity of the alloy, but also makes the microstructure evolution and performance optimization more complex. Meanwhile, the development of industrialization is relatively slow because of the influence of alloy composition and poor intrinsic brittleness. This paper provides an overview of the processing and working technologies, progress of microstructure, properties and the current industrialization situation of the typical β-solidifying TiAl alloy. The technology and cost advantages of processing and working were analyzed. The effect mechanisms of alloy composition, hot deformation, heat treatment and alloying on microstructure evolution and property optimization were clarified, and the restrictions and future prospects of industrialization were pointed out.
  • loading
  • [1]
    Hu H, Wu X Z, Wang R, et al. Phase stability, mechanical properties and electronic structure of TiAl alloying with W, Mo, Sc and Yb: first-principles study[J]. Journal of Alloys and Compounds, 2016,658:689−696. doi: 10.1016/j.jallcom.2015.10.270
    [2]
    Ostrovskaya O, Badini C, Baudana G, et al. Thermogravimetric investigation on oxidation kinetics of complex Ti-Al alloys[J]. Intermetallics, 2018,93:244−250. doi: 10.1016/j.intermet.2017.09.020
    [3]
    Qiu C H, Liu Y, Huang L, et al. Tuning mechanical properties for β(B2)-containing TiAl intermetallics[J]. Transactions of Nonferrous Metals Society of China, 2012,22:2593−2603. doi: 10.1016/S1003-6326(11)61505-7
    [4]
    Jiang H T, Zeng S W, Zhao A M, et al. Hot deformation behavior of β phase containing γ-TiAl alloy[J]. Materials Science and Engineering A, 2016,661:160−167. doi: 10.1016/j.msea.2016.03.005
    [5]
    Raji S A, Popoola A, Pityana S L, et al. Characteristic effects of alloying elements on β solidifying titanium aluminides: A review[J]. Heliyon, 2020,6(7):e04463. doi: 10.1016/j.heliyon.2020.e04463
    [6]
    Chen W, Li Z. Additive manufacturing of titanium aluminides[J]. Additive Manufacturing for the Aerospace Industry, 2019,11:235−263.
    [7]
    Mccullough C, Valencia J J, Levi C G, et al. Phase equilibria and solidification in Ti-Al alloys[J]. Acta Metallurgica, 1989,37(5):1321−1336. doi: 10.1016/0001-6160(89)90162-4
    [8]
    Oehring M, Stark A, Paul J D H, et al. Microstructural refinement of boron-containing β-solidifying γ-titanium aluminide alloys through heat treatments in the β phase field[J]. Intermetallics, 2013,32:12−20. doi: 10.1016/j.intermet.2012.08.010
    [9]
    Erdely P, Staron P, Stark A, et al. In situ and atomic-scale investigations of the early stages of γ precipitate growth in a supersaturated intermetallic Ti-44Al-7Mo solid solution[J]. Acta Materialia, 2019,164:110−121. doi: 10.1016/j.actamat.2018.10.042
    [10]
    Zhang Y, Wang X P, Kong F T, et al. Microstructure, texture and mechanical properties of Ti-43Al-9V-0.2Y alloy hot-rolled at various temperatures[J]. Journal of Alloys and Compounds, 2019,777:795−805. doi: 10.1016/j.jallcom.2018.10.362
    [11]
    Zhang Y, Wang X P, Kong F T, et al. A high-performance β-solidifying TiAl alloy sheet: Multi-type lamellar microstructure and phase transformation[J]. Materials Characterization, 2018,138:136−144. doi: 10.1016/j.matchar.2018.02.005
    [12]
    Zhang Y, Wang X P, Kong F T, et al. A high-performance β-stabilized Ti-43Al-9V-0.2Y alloy sheet with a nano-scaled antiphase domain[J]. Materials Letters, 2018,214:182−185. doi: 10.1016/j.matlet.2017.12.002
    [13]
    Zhang D D, Chen Y Y, Zhang G Q, et al. Hot deformation behavior and microstructural evolution of PM Ti43Al9V0.3Y with fine equiaxed γ and B2 grain microstructure[J]. Materials, 2020,13(4):896. doi: 10.3390/ma13040896
    [14]
    Liu G H, Li T R, Wang X Q, et al. Effect of alloying additions on work hardening, dynamic recrystallization, and mechanical properties of Ti-44Al-5Nb-1Mo alloys during direct hot-pack rolling[J]. Materials Science and Engineering A, 2020,773:138838. doi: 10.1016/j.msea.2019.138838
    [15]
    Hu D, Yang C, Huang A, et al. Solidification and grain refinement in Ti45Al2Mn2Nb1B[J]. Intermetallics, 2012,22:68−76. doi: 10.1016/j.intermet.2011.11.003
    [16]
    Kuang J P, Harding R A, Campbell J. Examination of defects in gamma titanium aluminide investment castings[J]. Cast Metals, 2000,13(3):125−134. doi: 10.1080/13640461.2000.11819395
    [17]
    Tetsui T. Development of a TiAl turbocharger for passenger vehicles[J]. Materials Science and Engineering A, 2002,329-331(1):582−588.
    [18]
    Schwaighofer E, Clemens H, Mayer S, et al. Microstructural design and mechanical properties of a cast and heat-treated intermetallic multi-phase γ-TiAl based alloy[J]. Intermetallics, 2014,44:128−140. doi: 10.1016/j.intermet.2013.09.010
    [19]
    Bazhenov V E, Kuprienko V S, Fadeev A V, et al. Influence of Y and Zr on TiAl43Nb4Mo1B0.1 titanium aluminide microstructure and properties[J]. Materials Science and Technology, 2020,36(5):548−555. doi: 10.1080/02670836.2020.1716493
    [20]
    Schmoelzer T, Mayer S, Sailer C, et al. In situ diffraction experiments for the investigation of phase fractions and ordering temperatures in Ti-44Al-(3~7) Mo alloys[J]. Advanced Engineering Materials, 2011,13(4):306−311. doi: 10.1002/adem.201000263
    [21]
    Zhou H T, Kong F T, Wang X P, et al. Hot deformation behavior and microstructural evolution of as-forged Ti-44Al-8Nb-(W, B, Y) alloy with nearly lamellar microstructure[J]. Intermetallics, 2017,81:62−72. doi: 10.1016/j.intermet.2017.02.026
    [22]
    Zhou H T, Kong F T, Wu K, et al. Hot pack rolling nearly lamellar Ti-44Al-8Nb-(W, B, Y) alloy with different rolling reductions: Lamellar colonies evolution and tensile properties[J]. Materials and Design, 2017,121:202−212. doi: 10.1016/j.matdes.2017.02.053
    [23]
    Zhou H T, Kong F T, Wang X P, et al. High strength in high Nb containing TiAl alloy sheet with fine duplex microstructure produced by hot pack rolling[J]. Journal of Alloys and Compounds, 2016,695:3495−3502.
    [24]
    Xu R R, Li M Q. γ→β phase transformation in Ti-42.9Al-4.6Nb–2Cr[J]. Intermetallics, 2021,133:107169. doi: 10.1016/j.intermet.2021.107169
    [25]
    Gao Q, Wang Z, Zhang L Q, et al. Joining of β-γ TiAl alloys containing high content of niobium by pulse current diffusion bonding[J]. Intermetallics, 2021,133:107184. doi: 10.1016/j.intermet.2021.107184
    [26]
    Wu X H. Review of alloy and process development of TiAl alloys[J]. Intermetallics, 2006,14(10-11):1114−1122. doi: 10.1016/j.intermet.2005.10.019
    [27]
    Aguilar J, Schievenbusch A, Kättlitz O. Investment casting technology for production of TiAl low pressure turbine blades-process engineering and parameter analysis[J]. Intermetallics, 2011,19:757−761. doi: 10.1016/j.intermet.2010.11.014
    [28]
    Kothari K, Radhakrishnan R, Wereley N M. Advances in gamma titanium aluminides and their manufacturing techniques[J]. Progress in Aerospace Sciences, 2012,55:1−16. doi: 10.1016/j.paerosci.2012.04.001
    [29]
    Gupta R K, Pant B, Sinha P P. Theory and practice of γ+α2 Ti aluminide: A review[J]. Transactions of the Indian Institute of Metals, 2014,67(2):143−165. doi: 10.1007/s12666-013-0334-y
    [30]
    Su Y Q, Guo J J, Jia J, et al. Composition control of a TiAl melt during the induction skull melting (ISM) process[J]. Journal of Alloys and Compounds, 2002,334(1-2):261−266. doi: 10.1016/S0925-8388(01)01766-2
    [31]
    Singh V, Mondal C, Kumar A, et al. High temperature compressive flow behavior and associated microstructural development in a β-stabilized high Nb-containing γ-TiAl based alloy[J]. Journal of Alloys and Compounds, 2019,778:573−585.
    [32]
    Zhang S Z, Kong F T, Chen Y Y, et al. Phase transformation and microstructure evolution of differently processed Ti-45Al-9Nb-Y alloy[J]. Intermetallics, 2012,31:208−216. doi: 10.1016/j.intermet.2012.07.009
    [33]
    Fang H Z, Chen R R, Liu Y L, et al. Effects of niobium on phase composition and improving mechanical properties in TiAl alloy reinforced by Ti2AlC[J]. Intermetallics, 2019,115:106630. doi: 10.1016/j.intermet.2019.106630
    [34]
    Yang L, Chai L H, Liang Y F, et al. Numerical simulation and experimental verification of gravity and centrifugal investment casting low pressure turbine blades for high Nb-TiAl alloy[J]. Intermetallics, 2015,66:149−155. doi: 10.1016/j.intermet.2015.07.006
    [35]
    Fu P X, Kang X H, Ma Y C, et al. Centrifugal casting of TiAl exhaust valves[J]. Intermetallics, 2008,16(2):130−138. doi: 10.1016/j.intermet.2007.08.007
    [36]
    Cheng X, Yuan C, Blackburn S, et al. The influence of ZrO2 concentration in an yttria-based face coat for investment casting a Ti-45Al-2Mn-2Nb-0.2TiB alloy using a sessile drop method[J]. Metallurgical and Materials Transactions A, 2015,46(3):1328−1336. doi: 10.1007/s11661-014-2724-0
    [37]
    Cheng X, Yuan C, Blackburn S, et al. Influence of Al2O3 concentration in yttria based face coats for investment casting Ti-45Al-2Mn-2Nb-0.2TiB alloy[J]. Materials Science and Technology, 2014,30(14):1758−1764. doi: 10.1179/1743284713Y.0000000467
    [38]
    Trzaska Z, Bonnefont G, Fantozzi G, et al. Comparison of densification kinetics of a TiAl powder by spark plasma sintering and hot pressing[J]. Acta Materialia, 2017,135:1−13. doi: 10.1016/j.actamat.2017.06.004
    [39]
    Cobbinah P V, Matizamhuka W R. Solid-state processing route, mechanical behaviour, and oxidation resistance of TiAl alloys[J]. Advances in Materials Science and Engineering, 2019,(2):1−21.
    [40]
    Wang Y H, Lin J P, He Y H, et al. Microstructures and mechanical properties of Ti-45Al-8.5Nb-(W, B, Y) alloy by SPS-HIP route[J]. Materials Science and Engineering A, 2008,489:56−61.
    [41]
    Xu G, Jiang S D, Cao F Y, et al. A β-solidifying TiAl alloy reinforced with ultra-fine Y-rich precipitates[J]. Scripta Materialia, 2021,192:55−60. doi: 10.1016/j.scriptamat.2020.10.010
    [42]
    Jabbar H, Monchoux J P, Thomas M, et al. Improvement of the creep properties of TiAl alloys densified by spark plasma sintering[J]. Intermetallics, 2014,46:1−3. doi: 10.1016/j.intermet.2013.10.019
    [43]
    Srivastava D, Hu D, Chang I, et al. The influence of thermal processing route on the microstructure of some TiAl-based alloys[J]. Intermetallics, 1999,7(10):1107−1112. doi: 10.1016/S0966-9795(99)00029-1
    [44]
    Kan W, Chen B, Peng H, et al. Formation of columnar lamellar colony grain structure in a high Nb-TiAl alloy by electron beam melting[J]. Journal of Alloys and Compounds, 2019,809:151673. doi: 10.1016/j.jallcom.2019.151673
    [45]
    Löber L, Schimansky F P, Kühn U, et al. Selective laser melting of a beta-solidifying TNM-B1 titanium aluminide alloy[J]. Journal of Materials Processing Technology, 2014,214(9):1852−1860. doi: 10.1016/j.jmatprotec.2014.04.002
    [46]
    Rittinghaus S K, Ramirez V, Zielinski J, et al. Oxygen gain and aluminum loss during laser metal deposition of intermetallic TiAl[J]. Journal of Laser Applications, 2019,31(4):1−12.
    [47]
    Imayev V M, Imayev R M, Kuznetsov A V, et al. Superplastic properties of Ti-45.2Al-3.5(Nb, Cr, B) sheet material rolled below the eutectoid temperature[J]. Materials Science & Engineering A, 2003,348(1-2):15−21.
    [48]
    Zhang S Z, Zhang C J, Du Z X, et al. Microstructure and tensile properties of hot fogred high Nb containing TiAl based alloy with initial near lamellar microstructure[J]. Materials Science and Engineering A, 2015,642:16−21. doi: 10.1016/j.msea.2015.06.066
    [49]
    Kim Y W, Dimiduk D M. Progress in the understanding of gamma titanium aluminides[J]. JOM, 1991,43(8):40−47. doi: 10.1007/BF03221103
    [50]
    Cho H S, Nam S W, Hwang S K, et al. Tensile creep deformation and fracture behaviors of the lamellar TiAl alloy of elemental powder metallurgy[J]. Scripta Materialia, 1997,36(11):1295−1301. doi: 10.1016/S1359-6462(96)00493-9
    [51]
    Carneiro T, Kim Y W. Evaluation of ingots and alpha-extrusions of gamma alloys based on Ti-45Al-6Nb[J]. Intermetallics, 2005,13(9):1000−1007. doi: 10.1016/j.intermet.2004.12.008
    [52]
    Tetsui T, Shindo K, Kaji S, et al. Fabrication of TiAl components by means of hot forging and machining[J]. Intermetallics, 2005,13(9):971−978. doi: 10.1016/j.intermet.2004.12.012
    [53]
    Tetsui T, Shindo K, Kobayashi S, et al. Strengthening a high-strength TiAl alloy by hot-forging[J]. Intermetallics, 2003,11(4):299−306. doi: 10.1016/S0966-9795(02)00245-5
    [54]
    Donald S, Kim Y W. Sheet rolling and performance evaluation of beta gamma (β-γ) alloys [C]// Ti-2007 Science and Engineering. Kyoto, Japan: The Japan Institute of Metals, 2007.
    [55]
    Xu W C, Shan D B, Zhang H, et al. Effects of extrusion deformation on microstructure, mechanical properties and hot workability of β containing TiAl alloy[J]. Materials Science and Engineering A, 2013,571:199−206. doi: 10.1016/j.msea.2013.02.005
    [56]
    Li T R, Liu G H, Xu M, et al. Effects of hot-pack rolling process on microstructure, high-temperature tensile properties, and deformation mechanisms in hot-pack rolled thin Ti-44Al-5Nb-(Mo, V, B) sheets[J]. Materials Science and Engineering A, 2019,764:138197. doi: 10.1016/j.msea.2019.138197
    [57]
    Gerling R, Bartels A, Clemens H, et al. Structural characterization and tensile properties of a high niobium containing gamma TiAl sheet obtained by powder metallurgical processing[J]. Intermetallics, 2004,12(3):275−280. doi: 10.1016/j.intermet.2003.10.005
    [58]
    Das G, Kestler H, Clemens H, et al. Sheet gamma TiAl: Status and opportunities[J]. JOM, 2004,56(11):42−45. doi: 10.1007/s11837-004-0251-y
    [59]
    Cui N, Wu Q Q, Bi K X, et al. Effect of heat treatment on microstructures and mechanical properties of a novel β-solidifying TiAl alloy[J]. Materials, 2019,12(10):1672. doi: 10.3390/ma12101672
    [60]
    Clemens H, Wallgram W, Kremmer S, et al. Design of novel β-solidifying TiAl alloys with adjustable β/B2-phase fraction and excellent hot-workability[J]. Advanced Engineering Materials, 2008,10(8):707−713. doi: 10.1002/adem.200800164
    [61]
    Wu Q Q, Cui N, Xiao X H, et al. Hot deformation behavior and microstructural evolution of a novel-solidifying Ti-43Al-3Mn-2Nb-0.1Y alloy[J]. Materials, 2019,12:2172. doi: 10.3390/ma12132172
    [62]
    Su Y J, Kong F T, Chen Y Y, et al. Microstructure and mechanical properties of large size Ti-43Al-9V-0.2Y alloy pancake produced by pack-forging[J]. Intermetallics, 2013,34:29−34. doi: 10.1016/j.intermet.2012.11.004
    [63]
    Bolz S, Oehring M, Lindemann J, et al. Microstructure and mechanical properties of a forged β-solidifying γ TiAl alloy in different heat treatment conditions[J]. Intermetallics, 2015,58:71−83. doi: 10.1016/j.intermet.2014.11.008
    [64]
    Jiang Z G, Chen B, Liu K, et al. Effects of boron on phase transformation of high Nb containing TiAl-based alloy[J]. Intermetallics, 2007,15(5-6):738−743. doi: 10.1016/j.intermet.2006.10.028
    [65]
    Han J C, Xiao S L, Tian J, et al. Grain refinement by trace TiB2 addition in conventional cast TiAl-based alloy[J]. Materials Characterization, 2015,106:112−122. doi: 10.1016/j.matchar.2015.05.020
    [66]
    Han J C, Xiao S L, Tian J, et al. Microstructure characterization, mechanical properties and toughening mechanism of TiB2-containing conventional cast TiAl-based alloy[J]. Materials Science and Engineering A, 2015,645:8−19. doi: 10.1016/j.msea.2015.07.092
    [67]
    Chen Y Y, Kong F T, Han J C, et al. Influence of yttrium on microstructure, mechanical properties and deformability of Ti-43Al-9V alloy[J]. Intermetallics, 2005,13(3-4):263−266. doi: 10.1016/j.intermet.2004.07.014
    [68]
    Li M G, Xiao S L, Chen Y Y, et al. The effect of carbon addition on the high-temperature properties of β solidification TiAl alloys[J]. Journal of Alloys and Compounds, 2019,775:441−448. doi: 10.1016/j.jallcom.2018.09.397
    [69]
    Fang H Z, Chen R R, Yang Y, et al. Role of graphite on microstructural evolution and mechanical properties of ternary TiAl alloy prepared by arc melting method[J]. Materials and Design, 2018,156:300−310. doi: 10.1016/j.matdes.2018.06.048
    [70]
    Takeyama M, Kobayashi S. Physical metallurgy for wrought gamma titanium aluminides: Microstructure control through phase transformations[J]. Intermetallics, 2005,13(9):993−999. doi: 10.1016/j.intermet.2004.12.014
    [71]
    Fang H Z, Chen R R, Chen X Y, et al. Effect of Ta element on microstructure formation and mechanical properties of high-Nb TiAl alloys[J]. Intermetallics, 2019,104:43−51. doi: 10.1016/j.intermet.2018.10.017
    [72]
    Chen X F, Tang B, Liu Y, et al. Dynamic recrystallization behavior of the Ti-48Al-2Cr-2Nb alloy during isothermal hot deformation[J]. Progress in Natural Science:Materials International, 2019,29(5):587−594. doi: 10.1016/j.pnsc.2019.08.004
    [73]
    Bao Y, Yang D Y, Liu N, et al. High temperature deformation behavior and processing map of hot isostatically pressed Ti-47.5Al-2Cr-2Nb-0.2W-0.2B alloy using gas atomization powders[J]. Journal of Iron and Steel Research(International), 2017,24(4):81−87.
    [74]
    Kong F T, Cui N, Chen Y Y, et al. The hot deformation behavior of Ti-43A1-9V-Y alloy[J]. Acta Metallurgica Sinica, 2013,49(11):1363−1368. doi: 10.3724/SP.J.1037.2013.00513
    [75]
    Li T R, Liu G H, Xu M, et al. Flow stress prediction and hot deformation mechanisms in Ti-44Al-5Nb-(Mo, V, B) alloy[J]. Materials, 2018,11(10):2044. doi: 10.3390/ma11102044
    [76]
    Jiao Y, Wu T D, Zhang L J, et al. Effect of heat treatment on microstructure and mechanical properties of Ti48Al2Cr2Nb1B alloy[J]. Titanium Industry Progress, 2018,35(3):26−29.
    [77]
    Sallot P, Monchoux J P, Joulié S, et al. Impact of β-phase in TiAl alloys on mechanical properties after high temperature air exposure[J]. Intermetallics, 2020,119:106729. doi: 10.1016/j.intermet.2020.106729
    [78]
    Cui N, Wu Q Q, Bi K X, et al. Effect of multi-directional forging on the microstructure and mechanical properties of β-solidifying TiAl alloy[J]. Materials, 2019,12(9):1381. doi: 10.3390/ma12091381
    [79]
    Mengis L, Ulrich A S, Watermeyer P, et al. Oxidation behaviour and related microstructural changes of two β0-phase containing TiAl alloys between 600 °C and 900 °C[J]. Corrosion Science, 2021,178:109085. doi: 10.1016/j.corsci.2020.109085
    [80]
    Chen Y Y, Yang F, Kong F T, et al. Microstructure, mechanical properties, hot deformation and oxidation behavior of Ti-45Al-5.4V-3.6Nb-0.3Y alloy[J]. Journal of Alloys and Compounds, 2010,498(1):95−101. doi: 10.1016/j.jallcom.2010.03.118
    [81]
    Lu X, He X B, Zhang B, et al. High-temperature oxidation behavior of TiAl-based alloys fabricated by spark plasma sintering[J]. Journal of Alloys and Compounds, 2009,478(1-2):220−225. doi: 10.1016/j.jallcom.2008.11.134
    [82]
    Lin J P, Zhao L L, Li G Y, et al. Effect of Nb on oxidation behavior of high Nb containing TiAl alloys[J]. Intermetallics, 2011,19(2):131−136. doi: 10.1016/j.intermet.2010.08.029
    [83]
    Jiang G H, Zhao C Z, Yu J J, et al. Effect of Cr on microstructure and oxidation behavior of TiAl-based alloy with high Nb[J]. China Foundry, 2018,15(1):25−30.
    [84]
    Liu X P, Kai Y, Wang Z X, et al. Effect of Mo-alloyed layer on oxidation behavior of TiAl-based alloy[J]. Vacuum, 2013,89(1):209−214.
    [85]
    Pan Y, Lu X, Hayat M D, et al. Effect of Sn addition on the high-temperature oxidation behavior of high Nb-containing TiAl alloys[J]. Corrosion Science, 2020,166:108449. doi: 10.1016/j.corsci.2020.108449
    [86]
    Vojtěch D, Popela T, Kubásek J, et al. Comparison of Nb-and Ta-effectiveness for improvement of the cyclic oxidation resistance of TiAl-based intermetallics[J]. Intermetallics, 2011,19(4):493−501. doi: 10.1016/j.intermet.2010.11.025
    [87]
    Yao T H, Liu Y, Liu B, et al. Influence of carburization on oxidation behavior of high Nb contained TiAl alloy[J]. Surface & Coatings Technology, 2015,277:210−215.
    [88]
    Panov D O, Sokolovsky V S, Stepanov N D, et al. Oxidation resistance and thermal stability of a β-solidified γ-TiAl based alloy after nitrogen ion implantation[J]. Corrosion Science, 2020,177:109003. doi: 10.1016/j.corsci.2020.109003
    [89]
    Yu L D, Thongtem S, Vilaithong T, et al. Modification of tribology and high-temperature behavior of Ti-47Al intermetallic alloy nitrided by N ion implantation[J]. Surface & Coatings Technology, 2000,128(1):410−417.
    [90]
    Zhao B, Wu J S, Sun J. Effect of nitridation on the oxidation behavior of TiAl-based intermetallic alloys[J]. Intermetallics, 2001,9:697−703. doi: 10.1016/S0966-9795(01)00054-1
    [91]
    Bewlay B P, Nag S, Suzuki A, et al. TiAl alloys in commercial aircraft engines[J]. Materials at High Temperatures, 2016,33(4-5):549−559. doi: 10.1080/09603409.2016.1183068
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(3)

    Article Metrics

    Article views (471) PDF downloads(94) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return