Volume 42 Issue 6
Dec.  2021
Turn off MathJax
Article Contents
Yu Hao, Jiang Qingwei, Zhang Xiaoqing, Zhang Shoujian, Zhang Fengzhen. Effect of hot-pressing temperature on element diffusion behavior and microstructure of TC4/Ta layered composites[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(6): 109-114. doi: 10.7513/j.issn.1004-7638.2021.06.015
Citation: Yu Hao, Jiang Qingwei, Zhang Xiaoqing, Zhang Shoujian, Zhang Fengzhen. Effect of hot-pressing temperature on element diffusion behavior and microstructure of TC4/Ta layered composites[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(6): 109-114. doi: 10.7513/j.issn.1004-7638.2021.06.015

Effect of hot-pressing temperature on element diffusion behavior and microstructure of TC4/Ta layered composites

doi: 10.7513/j.issn.1004-7638.2021.06.015
  • Received Date: 2021-11-02
  • Accepted Date: 2021-11-19
  • Publish Date: 2021-12-31
  • TC4/Ta/TC4 layered metal composites (LMCs) were prepared by hot-pressing at different temperatures, and the diffusion behavior of interfacial elements and the microstructure at different temperatures were discussed. The results show that obvious diffusion behavior occurs at the interface during the process of hot-pressing and holding, and the two groups achieve good metallurgical bonding. High temperature hot-pressing promotes the diffusion of Al, V, Ti and Ta, and the degree of diffusion significantly affects the microstructure near the interface. The diffusion depth of each element is closely related to the atomic radius. As the atomic radius decreases, the diffusion behavior occurs more intensely. The element diffusion behavior leads to the decrease in the phase transition temperature of the titanium matrix near the interface, and the basketweave structure appears at 950 ℃ below the phase transition temperature of TC4. The microstructure changes with the change of the interface distance.
  • loading
  • [1]
    Huang Lujun, An Qi, Geng Lin, et al. Multiscale architecture and superior high-temperature performance of discontinuously reinforced titanium matrix composites[J]. Advanced Materials, 2021,33(6):2000688. doi: 10.1002/adma.202000688
    [2]
    Pan Deng, Zhang Xin, Hou Xiaodong, et al. TiB nano-whiskers reinforced titanium matrix composites with novel nano-reticulated microstructure and high performance via composite powder by selective laser melting[J]. Materials Science and Engineering:A, 2021,799:140137. doi: 10.1016/j.msea.2020.140137
    [3]
    Wang Shuai, Huang Lujun, Geng Lin, et al. Microstructure evolution and damage mechanism of layered titanium matrix composites under tensile loading[J]. Materials Science and Engineering:A, 2020,777:139067. doi: 10.1016/j.msea.2020.139067
    [4]
    Ma Z Y, Tjong S C, Gen L. In-situ Ti-TiB metal–matrix composite prepared by a reactive pressing process[J]. Scr Mater, 2000,42(4):367−373. doi: 10.1016/S1359-6462(99)00354-1
    [5]
    Alman D E, Hawk J A. The abrasive wear of sintered titanium matrix–ceramic particle reinforced composites[J]. Wear, 1999,225-229:629−639. doi: 10.1016/S0043-1648(99)00065-4
    [6]
    Huang L J, Geng L, Li A B, et al. In situ TiBw/Ti–6Al–4V composites with novel reinforcement architecture fabricated by reaction hot pressing[J]. Scr. Mater., 2009,60(11):996−999. doi: 10.1016/j.scriptamat.2009.02.032
    [7]
    Tjong S C, Mai Yiu Wing. Processing-structure-property aspects of particulate- and whisker-reinforced titanium matrix composites[J]. Composites Science and Technology, 2008,68(3):583−601.
    [8]
    Sen Indrani, Tamirisakandala S, Miracle D B, et al. Microstructural effects on the mechanical behavior of B-modified Ti–6Al–4V alloys[J]. Acta Materialia, 2007,55(15):4983−4993. doi: 10.1016/j.actamat.2007.05.009
    [9]
    Huang L J, Geng L, Peng H X, et al. Room temperature tensile fracture characteristics of in situ TiBw/Ti6Al4V composites with a quasi-continuous network architecture[J]. Scr. Mater., 2011,64(9):844−847. doi: 10.1016/j.scriptamat.2011.01.011
    [10]
    Liu B X, Huang L J, Geng L, et al. Microstructure and tensile behavior of novel laminated Ti–TiBw/Ti composites by reaction hot pressing[J]. Materials Science and Engineering:A, 2013,583:182−187. doi: 10.1016/j.msea.2013.06.058
    [11]
    Liu B X, Huang L J, Geng L, et al. Gradient grain distribution and enhanced properties of novel laminated Ti–TiBw/Ti composites by reaction hot-pressing[J]. Materials Science and Engineering:A, 2014,595:257−265. doi: 10.1016/j.msea.2013.12.013
    [12]
    Liu B X, Huang L J, Geng L, et al. Effects of reinforcement volume fraction on tensile behaviors of laminated Ti–TiBw/Ti composites[J]. Materials Science and Engineering:A, 2014,610:344−349. doi: 10.1016/j.msea.2014.05.057
    [13]
    Liu B X, Huang L J, Rong X D, et al. Bending behaviors and fracture characteristics of laminated ductile-tough composites under different modes[J]. Composites Science and Technology, 2016,126:94−105. doi: 10.1016/j.compscitech.2016.02.011
    [14]
    Huang L J, Wang S, Dong Y S, et al. Tailoring a novel network reinforcement architecture exploiting superior tensile properties of in situ TiBw/Ti composites[J]. Materials Science and Engineering:A, 2012,545:187−193. doi: 10.1016/j.msea.2012.03.019
    [15]
    Li Pei, Sun Qiaoyan, Xiao Lin, et al. Tuning the morphology of Ti–5Al–5Mo–5V–3Cr–1Zr alloy: From brittle to ductile fracture[J]. Materials Science and Engineering:A, 2020,769:138487. doi: 10.1016/j.msea.2019.138487
    [16]
    Meng Linglong, Wang Xiaojun, Hu Xiaoshi, et al. Role of structural parameters on strength-ductility combination of laminated carbon nanotubes/copper composites[J]. Composites Part A:Applied Science and Manufacturing, 2019,116:138−146. doi: 10.1016/j.compositesa.2018.10.021
    [17]
    Xiang Yeyang, Wang Xiaojun, Hu Xiaoshi, et al. Achieving ultra-high strengthening and toughening efficiency in carbon nanotubes/magnesium composites via constructing micro-nano layered structure[J]. Composites Part A:Applied Science and Manufacturing, 2019,119:225−234. doi: 10.1016/j.compositesa.2019.02.006
    [18]
    Lu Jinwen, Dong Longlong, Liu Yue, et al. Simultaneously enhancing the strength and ductility in titanium matrix composites via discontinuous network structure[J]. Composites Part A:Applied Science and Manufacturing, 2020,136:105971. doi: 10.1016/j.compositesa.2020.105971
    [19]
    Wei Liangxiao, Liu Xuyang, Zheng Shoutao, et al. Micromechanical and tribological behavior of titanium matrix composites reinforced with graphene oxide[J]. Mater Chem Phys, 2021,269:124763. doi: 10.1016/j.matchemphys.2021.124763
    [20]
    Dong L L, Lu J W, Fu Y Q, et al. Carbonaceous nanomaterial reinforced Ti-6Al-4V matrix composites: Properties, interfacial structures and strengthening mechanisms[J]. Carbon, 2020,164:272−286. doi: 10.1016/j.carbon.2020.04.009
    [21]
    Xiao Lu, Lu Weijie, Yang Zhifeng, et al. Effect of reinforcements on high temperature mechanical properties of in situ synthesized titanium matrix composites[J]. Materials Science and Engineering:A, 2008,491(1):192−198.
    [22]
    Esmaeili Mohammad Mahdi, Mahmoodi Mahboobeh, Imani Rana. Tantalum carbide coating on Ti-6Al-4V by electron beam physical vapor deposition method: Study of corrosion and biocompatibility behavior[J]. International Journal of Applied Ceramic Technology, 2017,14(3):374−382. doi: 10.1111/ijac.12658
    [23]
    Li Ren, Gu Yi, Zeng Fanhao, et al. High temperature diffusion behavior between Ta-10 W coating and CP-Ti and TC4 alloy[J]. Surface and Coatings Technology, 2021,406:126669. doi: 10.1016/j.surfcoat.2020.126669
    [24]
    Mali V I, Bataev A A, Maliutina Iu N, et al. Microstructure and mechanical properties of Ti/Ta/Cu/Ni alloy laminate composite materials produced by explosive welding[J]. The International Journal of Advanced Manufacturing Technology, 2017,93(9):4285−4294.
    [25]
    Cao R, Ding Y, Yan Y J, et al. Effect of heat treatment on interface behavior of martensite/austenite multilayered composites by accumulative hot roll bonding[J]. Compos Interfaces, 2019,26(12):1069−1085. doi: 10.1080/09276440.2019.1583007
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(1)

    Article Metrics

    Article views (232) PDF downloads(20) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return