Volume 43 Issue 2
May  2022
Turn off MathJax
Article Contents
Zhang Long, Li Qingbo, Dai Yu, Chen Donggao, He Yifan. A study on fatigue damage behavior of single-wire MIG welding joint for TC4 titanium alloy[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(2): 62-67. doi: 10.7513/j.issn.1004-7638.2022.02.010
Citation: Zhang Long, Li Qingbo, Dai Yu, Chen Donggao, He Yifan. A study on fatigue damage behavior of single-wire MIG welding joint for TC4 titanium alloy[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(2): 62-67. doi: 10.7513/j.issn.1004-7638.2022.02.010

A study on fatigue damage behavior of single-wire MIG welding joint for TC4 titanium alloy

doi: 10.7513/j.issn.1004-7638.2022.02.010
  • Received Date: 2022-03-28
    Available Online: 2022-05-11
  • Publish Date: 2022-04-28
  • A single-wire MIG welding process was carried out to weld TC4 titanium alloy with a thickness of 15 mm. The base metal and welded joint microstructure, tensile, and fatigue properties were analyzed and tested. The results showed that the welded joints were divided into the base metal, heat-affected zone, and weld zone. The base metal had an α+β equiaxed structure, and the heat-affected zone was a mixture of α+β and α′-martensite. The grains in the weld zone presented a coarse state under the intense thermal shock; meanwhile, the α′-martensite structure formed the interior of the grain. The tensile specimen fractured at the base metal, and the elongation after fracture was 10.5%. The fatigue life of base metal and welded joints decreased with increased stress levels. The fatigue life of base metal was higher than that of base metal at high-stress levels but opposite at low-stress levels. The fatigue source of the base metal was located at the surface scratches of the sample, and the joint fatigue originated from the internal pores. Many secondary cracks formed in the fatigue propagation zone of the joint, the spacing of the fatigue bands in the fatigue propagation zone was more minor than that of the base metal, and there were many dimples in the transient fracture zone of the joint and the base metal.
  • loading
  • [1]
    Han Xu, Li Qiang, Jiang Xunyong, et al. Research on corrosion of TC4 titanium alloy in concentrated high-salt wastewater environment[J]. Iron Steel Vanadium Titanium, 2021,42(6):133−137. (韩旭, 李强, 姜训勇, 等. 高盐废水浓缩环境中的TC4钛合金腐蚀研究[J]. 钢铁钒钛, 2021,42(6):133−137. doi: 10.7513/j.issn.1004-7638.2021.06.018
    [2]
    Zhao Qinyang, Chen Yongnan, Xu Yiku, et al. Progress and prospects of cost-effective manufacturing technologies for titanium alloys[J]. The Chinese Journal of Nonferrous Metals, 2021,31(11):3127−3140. (赵秦阳, 陈永楠, 徐义库, 等. 钛合金材料低成本化制备技术进展与展望[J]. 中国有色金属学报, 2021,31(11):3127−3140.
    [3]
    Zhao Yongqing, Ge Peng, Xin Shewei. Progresses of R&D on Ti-alloy materials in recent 5 years[J]. Materials China, 2020,39(7):527−534. (赵永庆, 葛鹏, 辛社伟. 近五年钛合金材料研发进展[J]. 中国材料进展, 2020,39(7):527−534.
    [4]
    Feng Jing, Fan Limin, Geng Naitao, et al. Research on TIG welding process of high strength titanium alloy[J]. Iron Steel Vanadium Titanium, 2021,42(6):158−163. (冯靖, 樊立民, 耿乃涛, 等. 高强钛合金TIG焊接工艺研究[J]. 钢铁钒钛, 2021,42(6):158−163. doi: 10.7513/j.issn.1004-7638.2021.06.023
    [5]
    Liu Jia, Xu Jialei, Ma Zhaowei, et al. Research on hybrid welding technique based on plasma and MIG of titanium alloy[J]. Materials Reports, 2021,35(S02):358−360. (刘甲, 徐家磊, 马照伟, 等. 钛合金等离子和MIG复合焊接技术研究[J]. 材料导报, 2021,35(S02):358−360.
    [6]
    Liu Shouyi, Wang Youjun, Geng Tao. Study on microstructure and mechanical properties of MIG welded joint of TA5 titanium alloy[J]. Journal of Dalian Jiaotong University, 2018,39(3):86−88. (刘守义, 王有君, 耿涛. 钛合金MIG焊接头组织性能[J]. 大连交通大学学报, 2018,39(3):86−88.
    [7]
    Mou Gang, Hua Xueming, Xu Xiaobo, et al. Comparative study on welding procedure and performance of 8 mm thick TC4 titanium alloy with TIG and MIG[J]. Electric Welding Machine, 2020,50(4):70−74. (牟刚, 华学明, 徐小波, 等. 8 mm厚TC4钛合金TIG、MIG焊接工艺及性能对比研究[J]. 电焊机, 2020,50(4):70−74.
    [8]
    Li Ruiwu, Qiu Shengwen, Xu Jialei, et al. Double-sided double-arc MIG welding process of titanium alloy T-joint[J]. Welding & Joining, 2020,(8):39−44,63. (李瑞武, 邱胜闻, 徐家磊, 等. 钛合金T形接头双面双弧MIG焊工艺[J]. 焊接, 2020,(8):39−44,63.
    [9]
    He Yifan, Chen Donggao, Zhang Long, et al. Research on microstructure and properties of TC4 titanium alloy MIG welded joints after heat treatment[J]. Iron Steel Vanadium Titanium, 2021,42(6):164−170. (何逸凡, 陈东高, 张龙, 等. TC4钛合金MIG焊接头热处理后组织性能研究[J]. 钢铁钒钛, 2021,42(6):164−170. doi: 10.7513/j.issn.1004-7638.2021.06.024
    [10]
    Xu Liang, Su Juji, Zhou Song, et al. Fatigue performance and fracture mechanism of dual-beam laser welded T-joints of TC4 titanium alloy[J]. The Chinese Journal of Nonferrous Metals, 2019,29(7):1408−1416. (许良, 苏居季, 周松, 等. TC4钛合金激光双光束焊T形接头疲劳性能及断裂机理[J]. 中国有色金属学报, 2019,29(7):1408−1416.
    [11]
    Yang Wulin, Yang Xiaohua, Li Xiaoyan, et al. Analysis on fatigue property and fracture mechanism of TC4 titanium alloy joint during laser welding[J]. Transactions of the China Welding Institution, 2012,33(3):105−108,118. (杨武林, 杨晓华, 李晓延, 等. TC4钛合金薄板激光焊接接头的疲劳寿命及断口分析[J]. 焊接学报, 2012,33(3):105−108,118.
    [12]
    Xiao Lei, Feng Ganjiang. Low-cycle fatigue behavior of new single crystal superalloy WZ4 at high temperature[J]. Hot Working Technology, 2019,(2):50−54. (肖磊, 冯赣江. 新型单晶高温合金WZ4的高温低周疲劳行为[J]. 热加工工艺, 2019,(2):50−54.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(4)

    Article Metrics

    Article views (98) PDF downloads(29) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return