Volume 43 Issue 2
May  2022
Turn off MathJax
Article Contents
Su Hongyan. The effect of annealing process on the microstructures and properties of 2 000 MPa cold-drawn steel wire[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(2): 172-177. doi: 10.7513/j.issn.1004-7638.2022.02.026
Citation: Su Hongyan. The effect of annealing process on the microstructures and properties of 2 000 MPa cold-drawn steel wire[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(2): 172-177. doi: 10.7513/j.issn.1004-7638.2022.02.026

The effect of annealing process on the microstructures and properties of 2 000 MPa cold-drawn steel wire

doi: 10.7513/j.issn.1004-7638.2022.02.026
  • Received Date: 2020-11-28
    Available Online: 2022-05-11
  • Publish Date: 2022-04-28
  • Annealing was used to simulate the galvanizing process of a kind of cold drawn steel wire, and the changes in the structure and properties of the cold drawn steel wire during the galvanizing process were studied utilizing a scanning electron microscope, transmission electron microscope, combined with conventional mechanical testing methods in this paper. The test results showed that the annealing time affected the steel wire′s microstructure and mechanical properties. With the extension of annealing time, the strength of cold drawn steel wire fluctuated first and then decreased significantly subsequently. Meanwhile, the torsional property showed a trend of decreasing first and then rising, and the stage of strength rising was consistent with the stage of significant deterioration of its torsional property. In addition, the surface structure of the steel wire firstly degenerated, the lamellar cementite breaks, forming cementite particles, and the internal dislocation density in the ferrite decreased, while the internal structure of the steel wire could maintain a relatively complete pearlite lamellar structure; after a long time of heat treatment, the surface and internal pearlite lamellar structures all degenerated. The severe deterioration of the torsional properties of cold drawn steel wire in the process of galvanizing was the surface structure inconsistent with the internal structure, and the surface strength was high, causing the deformation was the largest in the torsion process. As a result, stress concentration rapidly deteriorated the torsional performance.
  • loading
  • [1]
    Wan Baotian. High strength galvanized steel wire for bridge cables[J]. World Bridge, 2005,(1):62−66. (万宝田. 桥梁缆索用高强度镀锌钢丝[J]. 世界桥梁, 2005,(1):62−66. doi: 10.3969/j.issn.1671-7767.2005.01.018
    [2]
    Chen Xianzhong, Yan Guanglin, Xu Wei, et al. Development of high strength and toughness galvanized steel wire[J]. Metal Products, 2009,(5):11−13. (陈贤忠, 鄢光霖, 徐伟, 等. 强韧性特高强度镀锌钢丝的研制[J]. 金属制品, 2009,(5):11−13. doi: 10.3969/j.issn.1003-4226.2009.05.004
    [3]
    张云祥. 高强度线材热加工的组织演变和性能预报系统研究[D]. 武汉: 华中科技大学, 2010.

    Zhang Yunxiang. Research on microstructure evolution and property prediction system of high strength wire rod during hot working[D]. Wuhan: Huazhong University of Science and Technology, 2010.
    [4]
    Shen Yunxia, Fang Feng, Jiang Jianqing. Microstructure and properties of cold drawn pearlite steel wire during isothermal treatment[J]. Journal of Material Heat Treatment, 2009,30(5):83−86. (沈云霞, 方峰, 蒋建清. 等温处理过程中冷拔珠光体钢丝的组织及其性能[J]. 材料热处理学报, 2009,30(5):83−86.
    [5]
    Ye Jueming. Broken wire problem of steel wire for cable[J]. Steel Structure, 2003,(2):35−36. (叶觉明. 缆索用钢丝的断丝问题[J]. 钢结构, 2003,(2):35−36.
    [6]
    Zhang Xiaodan, Liu Wei. Microstructure and ferrite orientation and texture evolution during cold drawing of pearlite steel wire[J]. Acta Metallurgica Sinica, 2010,46(2):141−146. (张晓丹, 刘伟. 珠光体钢丝冷拔过程中微观组织及铁素体微区取向与织构演变[J]. 金属学报, 2010,46(2):141−146.
    [7]
    涂益友. 高速大应变冷拔钢丝的组织和力学性能[D]. 南京: 东南大学, 2006.

    Tu Yiyou. Microstructure and mechanical properties of high speed and large strain cold drawn steel wire[D]. Nanjing: Southeast University, 2006.
    [8]
    Meng Xiancheng, Liu Yu, Shi Binghua, et al. Study on thermal diffusion law of central carbon segregation in cord billet[J]. Metal Heat Treatment, 2009,34(11):101−104. (孟宪成, 刘宇, 史秉华, 等. 帘线钢坯中心碳偏析的热扩散规律研究[J]. 金属热处理, 2009,34(11):101−104.
    [9]
    Wang Lei, Ma Han, Li Ping, et al. Effect of temperature rise on torsion property of high carbon steel wire during wire drawing[J]. Metal Heat Treatment, 2012,37(11):33−36. (王雷, 麻晗, 李平, 等. 拉丝过程中温升对高碳钢丝扭转性能的影响[J]. 金属热处理, 2012,37(11):33−36.
    [10]
    徐忠良. 大跨度桥梁缆索用SWRS82B热轧盘条的组织与钢丝扭转性能研究[D]. 南京: 东南大学, 2006.

    Xu Zhongliang. Microstructure and torsion properties of SWRS82B hot rolled wire rod for long span bridge cables[D]. Nanjing: Southeast University, 2006.
    [11]
    Xiao Yinglong, Tang Mingzhu. Effect of cementite decomposition on delamination of high carbon steel wire[J]. Metal Products, 2006,(2):15−21. (肖英龙, 唐明珠. 渗碳体分解对高碳钢丝分层的影响[J]. 金属制品, 2006,(2):15−21. doi: 10.3969/j.issn.1003-4226.2006.02.006
    [12]
    Watte P, Humbeeck J V, Aernoudt E, et al. Strain ageing in heavily drawn eutectoid steel wires[J]. Scripta Materialia, 1996,34(1):85−95.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views (76) PDF downloads(16) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return