Volume 43 Issue 4
Sep.  2022
Turn off MathJax
Article Contents
Yu Yaojie, Song Yue, Dong Shishun, Ren Xiulian, Wei Qifeng. Research progress and perspectives of hydrochloric acid hydrolysis technology for titanium dioxide production[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(4): 28-35. doi: 10.7513/j.issn.1004-7638.2022.04.005
Citation: Yu Yaojie, Song Yue, Dong Shishun, Ren Xiulian, Wei Qifeng. Research progress and perspectives of hydrochloric acid hydrolysis technology for titanium dioxide production[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(4): 28-35. doi: 10.7513/j.issn.1004-7638.2022.04.005

Research progress and perspectives of hydrochloric acid hydrolysis technology for titanium dioxide production

doi: 10.7513/j.issn.1004-7638.2022.04.005
  • Received Date: 2022-05-08
  • Publish Date: 2022-09-14
  • Hydrochloric acid method is a new type of titanium dioxide production process following sulfuric acid method and chlorination method, which has the characteristics of less waste output, low requirements for raw materials, and can produce rutile and anatase. Hydrolysis is one of the important processes in the production of titanium dioxide by hydrochloric acid method. Hydrolysis can not only affect the yield, but also have a significant impact on the particle size distribution, morphology and crystal structure of the product. This paper introduces six hydrochloric acid hydrolysis technologies including atmospheric pressure hydrolysis, pressurized hydrolysis, microwave hydrolysis, low temperature hydrolysis, continuous hydrolysis and spray hydrolysis, expounds their respective technical routes and basic principles, analyzes and summarizes their advantages and disadvantages. Through the comprehensive comparison of these common hydrolysis technologies, it is considered that atmospheric pressure hydrolysis technology and pressurized hydrolysis technology are more likely to realize industrialization; Microwave hydrolysis technology and continuous hydrolysis technology are more suitable for the preparation of nanosized anatase titanium dioxide; The continuous hydrolysis and spray hydrolysis technologies are, however, not perfect and need to be further studied.
  • loading
  • [1]
    Gan Yuxin, Zhang Shuaiqi, Wang Zhige, et al. Application and research progress of titanium dioxide materials[J]. Technology & Development of Chemical, 2020,49(9):46−48. (甘禹鑫, 张帅奇, 王志鸽, 等. 二氧化钛材料的应用研究进展[J]. 化工技术与开发, 2020,49(9):46−48.

    Gan Yuxin, Zhang Shuaiqi, Wang Zhige, et al. Application and research progress of titanium dioxide materials[J]. Technology & Development of Chemical. 2020, 49(9): 46-48.
    [2]
    Gui Zhengtao, Wang Wenli, Li Jiankang, et al. Preparation, modification and application of titanium dioxide[J]. Modern Salt and Chemical Industry, 2021,48(5):12−14. (桂正涛, 王文利, 李建康, 等. 二氧化钛的制备、改性及其应用研究[J]. 现代盐化工, 2021,48(5):12−14. doi: 10.3969/j.issn.1005-880X.2021.05.005

    Gui Zhengtao, Wang Wenli, Li Jiankang, et al. Preparation, modification and application of titanium dioxide[J]. Modern Salt and Chemical Industry, 2021, 48(5): 12-14. doi: 10.3969/j.issn.1005-880X.2021.05.005
    [3]
    刘松翠. 三种不同晶型二氧化钛的合成与光活性及氟离子修饰对板钛矿二氧化钛光活性的影响[D]. 武汉: 中南民族大学, 2009.

    Liu Songcui. Synthesis and photoactivity of three different crystal types of titanium dioxide and the effect of fluoride ion modification on the photoactivity of plate titanium dioxide[D]. Wuhan: South-Central Minzu University, 2009.
    [4]
    Zhang Xiuzhen, Jiang Wenchuan, Lu Wei, et al. Development of preparation technology of rutile titanium dioxide with low oil absorption[J]. Chemical Engineering Design Communications, 2020,46(6):167−168,176. (张修臻, 姜文川, 鲁伟, 等. 低吸油量金红石钛白粉制备技术的研发[J]. 化工设计通讯, 2020,46(6):167−168,176. doi: 10.3969/j.issn.1003-6490.2020.06.106

    Zhang Xiuzhen, Jiang Wenchuan, Lu Wei, et al. Development of preparation technology of rutile titanium dioxide with low oil absorption[J]. Chemical Engineering Design Communications, 2020, 46(6): 167-168, 176. doi: 10.3969/j.issn.1003-6490.2020.06.106
    [5]
    Bi Sheng. Status of titanium dioxide industry in China and the development prospect[J]. Iron Steel Vanadium Titanium, 2021,42(5):99−108. (毕胜. 近年中国钛白粉行业基本状况及发展展望[J]. 钢铁钒钛, 2021,42(5):99−108. doi: 10.7513/j.issn.1004-7638.2021.05.016

    Bi Sheng. Status of titanium dioxide industry in China and the development prospect[J]. Iron Steel Vanadium Titanium, 2021, 42(5): 99-108. doi: 10.7513/j.issn.1004-7638.2021.05.016
    [6]
    Zhang Wensheng, Zhu Zhaowu, Cheng Chuyong. A literature review of titanium metallurgical processes[J]. Hydrometallurgy, 2011,108(3-4):177−188. doi: 10.1016/j.hydromet.2011.04.005
    [7]
    Zhao Ding, Liu Feng, Zhang Meijie, et al. Present situation and development direction of preparation technology of titanium dioxide in China[J]. Chemical Fiber & Textile Technology, 2021,50(12):51−53. (赵丁, 刘峰, 张美杰, 等. 我国钛白粉制备工艺的现状及发展方向[J]. 化纤与纺织技术, 2021,50(12):51−53. doi: 10.3969/j.issn.1672-500X.2021.12.018

    Zhao Ding, Liu Feng, Zhang Meijie, et al. Present situation and development direction of preparation technology of titanium dioxide in China[J]. Chemical Fiber & Textile Technology, 2021, 50(12): 51-53. doi: 10.3969/j.issn.1672-500X.2021.12.018
    [8]
    Wu You, Lan Guangming. Preparation technology and progress analysis in the global three major titanium dioxide process by hydrochloric acid[J]. Titanium Industry Progress, 2021,38(1):37−44. (吴优, 兰光铭. 全球三大盐酸法钛白制备工艺及进展分析[J]. 钛工业进展, 2021,38(1):37−44.

    Wu You, Lan Guangming. Preparation technology and progress analysis in the global three major titanium dioxide process by hydrochloric acid[J]. Titanium Industry Progress, 2021, 38(1): 37-44.
    [9]
    唐舒扬, 郭宇峰, 郑富强, 等. 钛白粉的制备方法现状及展望[J/OL]. 无机盐工业, https://doi.org/10.19964/j/issn.1006-4990.2021-0503.

    Tang Shuyang, Guo Yufeng, Zheng Fuqiang, et al. Present situation and prospects of preparation methods of titanium dioxide[J/OL]. Inorganic Chemicals Industry, https://doi.org/10.19964/j/issn.1006-4990.2021-0503.
    [10]
    Chen Hua, Tian Congxue, Liang Anbing, et al. Effects of hydrolysis conditions on rutile titanium white pigment prepared by low concentration of titanyl sulfate solution[J]. Iron Steel Vanadium Titanium, 2014,35(5):7−11. (陈华, 田从学, 梁安兵, 等. 水解条件对低浓度钛液制备金红石型颜料钛白的影响[J]. 钢铁钒钛, 2014,35(5):7−11. doi: 10.7513/j.issn.1004-7638.2014.05.002

    Chen Hua, Tian Congxue, Liang Anbing, et al. Effects of hydrolysis conditions on rutile titanium white pigment prepared by low concentration of titanyl sulfate solution[J]. Iron Steel Vanadium Titanium, 2014, 35(5): 7-11. doi: 10.7513/j.issn.1004-7638.2014.05.002
    [11]
    Tang Yong, Deng Ke, Zhang Dingming, et al. Production process of titanium dioxide via hydrochloric acid process[J]. Chlor-Alkali Industry, 2014,50(4):36−39. (唐勇, 邓科, 张定明, 等. 盐酸法钛白粉生产工艺[J]. 氯碱工业, 2014,50(4):36−39. doi: 10.3969/j.issn.1008-133X.2014.04.013

    Tang Yong, Deng Ke, Zhang Dingming, et al. Production process of titanium dioxide via hydrochloric acid process[J]. Chlor-Alkali Industry, 2014, 50(4): 36-39. doi: 10.3969/j.issn.1008-133X.2014.04.013
    [12]
    Shen Xiaoxiao. Current situation and development trend of CTL process to produce high purity TiO2[J]. Engineering and Technological Research, 2013,(6):47−50. (沈小小. CTL工艺生产高纯度TiO2现状及发展趋势[J]. 冶金丛刊, 2013,(6):47−50.

    Shen Xiaoxiao. Current situation and development trend of CTL process to produce high purity TiO2[J]. Engineering and Technological Research, 2013 (6): 47-50.
    [13]
    Zhong Yongming. Recovery technology of hydrochloric acid tail gas[J]. China Chlor-Alkali, 2016,(10):35−36. (钟永铭. 盐酸尾气回收技术改造[J]. 中国氯碱, 2016,(10):35−36. doi: 10.3969/j.issn.1009-1785.2016.10.012

    Zhong Yongming. Recovery technology of hydrochloric acid tail gas[J]. China Chlor-Alkali, 2016 (10): 35-36. doi: 10.3969/j.issn.1009-1785.2016.10.012
    [14]
    Zhang Ying, Fang Zhigang Zak, Sun Pei, et al. A study on the synthesis of coarse TiO2 powder with controlled particle sizes and morphology via hydrolysis[J]. Powder Technology, 2021,393:650−658. doi: 10.1016/j.powtec.2021.08.014
    [15]
    Mostafa N Y, Shaltout A A, Omar H, et al. Hydrothermal synthesis and characterization of aluminium and sulfate substituted 1.1 nm tobermorites.[J]. Journal of Alloys and Compounds, 2009,467:332−337. doi: 10.1016/j.jallcom.2007.11.130
    [16]
    Wang Hongmei, Tan Xin, Yu Tao, et al. Preparation and photoelectric property of TiO2 nanoparticles with controllable phase junctions[J]. Applied Surface Science, 2014,321:531−537. doi: 10.1016/j.apsusc.2014.10.017
    [17]
    Zheng Wenjun, Liu Xiaodi, Yan Zhiying, et al. Ionic liquid-assisted synthesis of large-scale TiO2 nanoparticles with controllable phase by hydrolysis of TiCl4[J]. ACS Nano, 2009,3(1):115−122. doi: 10.1021/nn800713w
    [18]
    Liu Yahui, Shao Dawei, Wang Weijing, et al. Preparation of rutile TiO2 by hydrolysis of TiOCl2 solution: experiment and theory[J]. RSC Advances, 2016,6(64):59541−59549. doi: 10.1039/C6RA04386K
    [19]
    Andrea Testino, Ignazio Renato Bellobono, Vincenzo Buscaglia, et al. Optimizing the photocatalytic properties of hydrothermal TiO2 by the control of phase composition and particle morphology: A systematic approach[J]. Journal of the American Chemical Society, 2007,129(12):3564−3575. doi: 10.1021/ja067050+
    [20]
    Mostafa Nasser Y, Mahmoud M H H, Heiba Z K, et al. Hydrolysis of TiOCl2 leached and purified from low-grade ilmenite mineral[J]. Hydrometallurgy, 2013,139:88−94. doi: 10.1016/j.hydromet.2013.08.002
    [21]
    Chen Zhiqin, Zeng Weijun, Li Wenkui, et al. Research progress in preparation of nano TiO2 by microwave hydrothermal method[J]. Management & Technology of SME, 2010,(2):234. (陈智琴, 曾卫军, 李文魁, 等. 微波水热法制备纳米TiO2的研究进展[J]. 中小企业管理与科技, 2010,(2):234.

    Chen Zhiqin, Ceng Weijun, Li Wenkui, et al. Research progress in preparation of nano TiO2 by microwave hydrothermal method[J]. Management & Technology of SME, 2010 (2): 234.
    [22]
    Xu Wenguo, Lu Shixiang, Wang Xingxing, et al. Preparation by microwave-assisted in aqueous phase and optical properties of TiO2[J]. Science and Technology Innovation Herald, 2014,11(19):20−24. (徐文国, 卢士香, 王星星, 等. 微波辅助水相合成TiO2及其催化活性研究[J]. 科技创新导报, 2014,11(19):20−24. doi: 10.3969/j.issn.1674-098X.2014.19.017

    Xu Wenguo, Lu Shixiang, Wang Xingxing, et al. Preparation by microwave-assisted in aqueous phase and optical properties of TiO2[J]. Science and Technology Innovation Herald, 2014, 11(19): 20-24. doi: 10.3969/j.issn.1674-098X.2014.19.017
    [23]
    董伟. 微波在恒温水溶液中的特性效应研究[D]. 济南: 山东大学, 2020.

    Dong Wei. Study on characteristic effect of microwave in thermostatic aqueous solution[D]. Jinan: Shandong University, 2020.
    [24]
    高跃. 水热及微波水热法合成超细纳米TiO2的研究[D]. 哈尔滨: 黑龙江大学, 2011.

    Gao Yue. Study on synthesis of ultrafine nano TiO2 by hydrothermal and microwave hydrothermal methods[D]. Harbin: Heilongjiang University, 2011.
    [25]
    Murugan A V, Samuel V, Ravi V, et al. Synthesis of nanocrystalline anatase TiO2 by microwave hydrothermal method[J]. Materials Letters, 2006,60(4):479−480. doi: 10.1016/j.matlet.2005.09.017
    [26]
    Chen Zhiqin, Chen Xiangliang, Zhang Shujuan, et al. Synthesis and characterization of nanocrystalline anatase by microwave hydrothermal method[J]. Advanced Materials in Microwaves and Optics, 2012,200:104.
    [27]
    Ren Lu, Li Yuanzhi, Hou Jingtao, et al. Preparation and enhanced photocatalytic activity of TiO2 nanocrystals with internal pores[J]. ACS Applied Materials & Interfaces, 2014,6(3):1608−1615.
    [28]
    Inada Miki, Kamada Kai, Enomoto Naoya, et al. Microwave effect for synthesis of TiO2 particles by self-hydrolysis of TiOCl2[J]. Journal of the Ceramic Society of Japan, 2006,114(1334):814−818. doi: 10.2109/jcersj.114.814
    [29]
    Gou Yuqiang, Hu Fangdi. Preparation of TiO2/ACF composite photocatalyst by low temperature hydrolysis and its application in the degradation of Alizarin red S[J]. Journal of Lanzhou University (Natural Sciences), 2012,48(4):131−135. (苟于强, 胡芳弟. 低温水解制备TiO2/ACF复合光催化剂及其对茜素红S的降解应用[J]. 兰州大学学报(自然科学版), 2012,48(4):131−135.

    Gou Yuqiang, Hu Fangdi. Preparation of TiO2/ACF composite photocatalyst by low temperature hydrolysis and its application in the degradation of Alizarin red S[J]. Journal of Lanzhou University (Natural Sciences), 2012, 48(4): 131-135.
    [30]
    Zhang Yanfeng, Wei Yu, Jia Zhenbin, et al. Rutile type titanium oxide nano-powder was synthesized by low temperature hydrolysis of TiOCl2 solution[J]. Journal of Inorganic Materials, 2001,(6):1217−1219. (张艳峰, 魏雨, 贾振斌, 等. TiOCl2 溶液低温水解合成金红石型氧化钛纳米粉[J]. 无机材料学报, 2001,(6):1217−1219. doi: 10.3321/j.issn:1000-324X.2001.06.031

    Zhang Yanfeng, Wei Yu, Jia Zhenbin, et al. Rutile type titanium oxide nano-powder was synthesized by low temperature hydrolysis of TiOCl2 solutio [J]. Journal of Inorganic Materials, 2001 (6): 1217-1219. doi: 10.3321/j.issn:1000-324X.2001.06.031
    [31]
    Seo D S, Lee J K, Kim H. Synthesis of TiO2 nanocrystalline powder by aging at low temperature[J]. Journal of Crystal Growth, 2001,233(1-2):298−302. doi: 10.1016/S0022-0248(01)01494-4
    [32]
    Rashidzadeh M, Faridnia B, Ghasemi M R. Low temperature synthesis of TiO2 nanoparticles[J]. Pigment & Resin Technology, 2012,41(5):270−275.
    [33]
    Zhao Hangyu, Qiao Jie, Yu Ronghua, et al. Continuous hydrolysis of hydantoin to hydantoic acid and its kinetics[J]. Guangzhou Chemical Industry, 2020,48(7):65−69. (赵航宇, 乔杰, 于荣华, 等. 海因连续水解生成海因酸及其动力学研究[J]. 广州化工, 2020,48(7):65−69. doi: 10.3969/j.issn.1001-9677.2020.07.025

    Zhao Hangyu, Qiao Jie, Yu Ronghua, et al. Continuous hydrolysis of hydantoin to hydantoic acid and its kinetics[J]. Guangzhou Chemical Industry, 2020, 48(7): 65-69. doi: 10.3969/j.issn.1001-9677.2020.07.025
    [34]
    Zhao Jinghui. Optimization of forward continuous hydrolysis process for high boiling silicone oil[J]. Fine and Specialty Chemicals, 2020,28(10):31−33. (赵景辉. 高沸硅油正向连续水解工艺流程优化[J]. 精细与专用化学品, 2020,28(10):31−33.

    Zhao Jinghui. Optimization of forward continuous hydrolysis process for high boiling silicone oil[J]. Fine and Specialty Chemicals. , 2020, 28(10): 31-33.
    [35]
    Zhang Jie, Feng Tingjie. Study and application of automatic continuous hydrolysis technology for furfural[J]. Henan Chemical Industry, 2019,36(10):33−35. (张洁, 冯亭杰. 糠醛自动化连续水解技术的研究与应用[J]. 河南化工, 2019,36(10):33−35. doi: 10.14173/j.cnki.hnhg.2019.10.010

    Zhang Jie, Feng Tingjie. Study and application of automatic continuous hydrolysis technology for furfural[J]. Henan Chemical Industry, 2019, 36(10): 33-35. doi: 10.14173/j.cnki.hnhg.2019.10.010
    [36]
    Kim K D, Kim H T. Synthesis of titanium dioxide nanoparticles using a continuous reaction method[J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2020,207:263−269.
    [37]
    Willem P C Duyvesteyn, Timothy Malcome Spitler, Bruce James Sabacky, et al. Processing aqueous titanium chloride solutions to ultrafine titanium dioxide: US Patent, US006440383B1[P]. 2002-08-27.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(1)

    Article Metrics

    Article views (258) PDF downloads(48) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return