Volume 43 Issue 4
Sep.  2022
Turn off MathJax
Article Contents
Shi Yan, Song Changhe, Liu Jianshuang, Hao Ke, Pan Miaomiao. Preparation of dicalcium ferrite and its catalytic properties for methane[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(4): 80-86. doi: 10.7513/j.issn.1004-7638.2022.04.013
Citation: Shi Yan, Song Changhe, Liu Jianshuang, Hao Ke, Pan Miaomiao. Preparation of dicalcium ferrite and its catalytic properties for methane[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(4): 80-86. doi: 10.7513/j.issn.1004-7638.2022.04.013

Preparation of dicalcium ferrite and its catalytic properties for methane

doi: 10.7513/j.issn.1004-7638.2022.04.013
  • Received Date: 2022-01-06
  • Publish Date: 2022-09-14
  • Using Iron(Ⅲ) nitrate nonahydrate and calcium nitrate tetrahydrate as raw materials, deionized water as solvent, citric acid as complexing agent, ammonia water to adjust pH value of solution, blank cordierite honeycomb as support, dicalcium ferrite cordierite honeycomb support type catalyst was prepared. The results show that nanoscale dicalcium ferrite/cordierite honeycomb-supported catalyst with single phase, high crystallinity and developed porosity can be obtained when the molar amount of citric acid is 2.5 times the total amount of calcium and iron ions, and calcinated at 700 ℃ for 2 h. The as-prepared nanosized dicalcium ferrite has a specific surface area of 174.29 m2/g, pore volume of 0.31423 cm3/g, pore size of 7.31 nm, and average pore size of 1.89 nm. It is a kind of non-noble metal catalysts for methane gas (VOCs of typical sintering flue gas) with good catalytic removal and mineralization performance.
  • loading
  • [1]
    王兰. 过渡金属基水分解电催化剂的同步辐射研究[D]. 合肥: 中国科学技术大学, 2021.

    Wang Lan. Synchrotron radiation study on the transition metal bsed electrocatalyst for water decomposition[D]. Hefei: University of Science and Technology of China, 2021.
    [2]
    Zong Yuhao, Huang Li, Chang Zhengfeng, et al. Effect of Zn on the performance of industrial V-Mo/Ti denitration catalyst[J]. Iron Vanadium Titanium Steel, 2020,41(6):30−34. (纵宇浩, 黄力, 常峥峰, 等. Zn对工业V-Mo/Ti脱硝催化剂性能的影响[J]. 钢铁钒钛, 2020,41(6):30−34. doi: 10.7513/j.issn.1004-7638.2020.06.007

    Zong Yuhao, Huang Li, Chang Zhengfeng, et al. Effect of Zn on the performance of industrial V-Mo/Ti denitration catalyst[J]. Iron Vanadium Titanium Steel, 2020, 41(6): 30-34. doi: 10.7513/j.issn.1004-7638.2020.06.007
    [3]
    Li Rong, Jia Yuefa, Zhen Qiang, et al. Preparation and photocatalytic properties of photocatalytic Fe2O3/TiO2 ceramics[J]. Iron Steel Vanadium Titanium, 2015,36(1):26−31. (李榕, 贾悦发, 甄强, 等. 光催化功能Fe2O3/TiO2陶瓷的制备及其光降解特性[J]. 钢铁钒钛, 2015,36(1):26−31.

    Li Rong, Jia Yuefa, Zhen Qiang, et al. Preparation and photocatalytic properties of photocatalytic Fe2O3/TiO2 ceramics[J]. Iron Steel Vanadium Titanium, 2015, 36(1): 26-31.
    [4]
    Xia Geyao, Chen Nan, Hu Weiwu, et al. Magnetic Fe3O4/Ag3PO4 composite photocatalyst catalytic degradation of malachite green in dye wastewater[J]. Environmental Engineering Journal, 2015,9(8):3821−3827. (夏阁遥, 陈男, 胡伟武, 等. 磁性Fe3O4/Ag3PO4复合光催化剂催化降解染料废水中的孔雀石绿[J]. 环境工程学报, 2015,9(8):3821−3827. doi: 10.12030/j.cjee.20150838

    Xia Geyao, Chen Nan, Hu Weiwu, et al. Magnetic Fe3O4/Ag3PO4 composite photocatalyst catalytic degradation of malachite green in dye wastewater[J]. Environmental Engineering Journal, 2015, 9(8): 3821-3827. doi: 10.12030/j.cjee.20150838
    [5]
    Li Yi, Wan Yuan, Li Yanping, et al. Low-temperature selective catalytic reduction of NO with NH3 over Mn2O3-doped Fe2O3 hexagonal microsheets[J]. ACS Applied Materials & Interfaces, 2016,8(8):5224−5233.
    [6]
    Wang Peng, Sun Hong, Quan Xie, et al. Enhanced catalytic activity over MIL-100(Fe) loaded ceria catalysts for the selective catalytic reduction of NOx with NH3 at low temperature[J]. Journal of Hazardous Materials, 2016,301(15):512−521.
    [7]
    Yang Ying. Preparation of graphene-iron doped TiO2 composite and its photocatalytic performance[J]. Iron Steel Vanadium Titanium, 2019,40(6):12−17. (杨颖. 石墨烯—铁掺杂二氧化钛复合物制备及其光催化性能[J]. 钢铁钒钛, 2019,40(6):12−17.

    Yang Ying. Preparation of graphene-iron doped TiO2 composite and its photocatalytic performance[J]. Iron Steel Vanadium Titanium, 2019, 40(6): 12-17.
    [8]
    Hou Ruijun, Qiu Rui, Sun Kening. Advances in catalysts for methanol synthesis from Cu-based CO2[J]. Chemical Progress, 2020,39(7):2639−2647. (侯瑞君, 邱瑞, 孙克宁. Cu基CO2合成甲醇催化剂载体的研究进展[J]. 化工进展, 2020,39(7):2639−2647.

    Hou Ruijun, Qiu Rui, Sun Kening. Advances in catalysts for methanol synthesis from Cu-based CO2[J]. Chemical Progress, 2020, 39(7): 2639-2647.
    [9]
    Bi Xuegong, Liao Jiyong, Xiong Wei, et al. Experimental study on SO2 and NOx removal during sintering[J]. Journal of Wuhan University of Science and Technology ( Natural Science Edition ), 2008,31(5):449−452. (毕学工, 廖继勇, 熊玮, 等. 烧结过程中脱除SO2和NOx的试验研究[J]. 武汉科技大学学报(自然科学版), 2008,31(5):449−452.

    Bi Xuegong, Liao Jiyong, Xiong Wei, et al. Experimental study on SO2 and NOx removal during sintering [J]. Journal of Wuhan University of Science and Technology ( Natural Science Edition ), 2008, 31(5): 449-452.
    [10]
    Liu Shihu, Zhou Maojun. Overview of flue gas circulation sintering process and its application in baosteel[J]. Baosteel Technology, 2018,(6):37−44. (刘仕虎, 周茂军. 烟气循环烧结工艺综述及其在宝钢应用的探讨[J]. 宝钢技术, 2018,(6):37−44. doi: 10.3969/j.issn.1008-0716.2018.06.008

    Liu Shihu, Zhou Maojun. Overview of flue gas circulation sintering process and its application in baosteel[J]. Baosteel Technology, 2018(6): 37-44. doi: 10.3969/j.issn.1008-0716.2018.06.008
    [11]
    Wan Junying, Chen Tiejun, Zhou Xianlin, et al. Experimental study on catalytic reduction of NO by sinter[J]. Journal of Iron and Steel Research, 2019,31(4):354−360. (万军营, 陈铁军, 周仙霖, 等. 烧结矿催化还原NO的实验研究[J]. 钢铁研究学报, 2019,31(4):354−360. doi: 10.13228/j.boyuan.issn1001-0963.20180202

    Wan Junying, Chen Tiejun, Zhou Xianlin, et al. Experimental study on catalytic reduction of NO by sinter[J]. Journal of Iron and Steel Research, 2019, 31(4): 354-360. doi: 10.13228/j.boyuan.issn1001-0963.20180202
    [12]
    Hans Bodo Luengen, Michael Peters, Peter Schmoele. Iron making in western europe[C]//Proceedings of 3rd CSM-VDEh Metallurgical Seminar. Beijing: The Chinese Society for Metals Steel Institute VDEh, 2011: 18.
    [13]
    Zou Ming, Guan Kejing, Wang Cejun. The significance of limiting the volatile content of sintering fuel for pollution reduction[J]. Zhejiang Metallurgy, 2015,(3):6−8. (邹明, 关克静, 王策军. 论限定烧结燃料挥发分含量对污染减排的重要意义[J]. 浙江冶金, 2015,(3):6−8.

    Zou Ming, Guan Kejing, Wang Cejun. The significance of limiting the volatile content of sintering fuel for pollution reduction[J]. Zhejiang Metallurgy , 2015(3): 6-8.
    [14]
    刘桂才. 生物质化学链气化特性及Ca2Fe2O5载氧体改性优化研究[D]. 广州: 华南理工大学, 2019.

    Liu Guicai. The chemical chain gasification characteristics of biomass and the modification and optimization of Ca2Fe2O5 oxygen carrier[D]. Guangzhou: South China University of Technology, 2019.
    [15]
    丁凯峰. LiMVO4(M=Mg, Zn)材料的制备[D]. 大连: 大连理工大学, 2018.

    Ding Kaifeng. Preparation of LiMVO4(M=Mg, Zn) materials[D]. Liaoning: Dalian University of Technology, 2018.
    [16]
    Cai Heshan, Liu Guoguang, Li Xiaoxia. Study on preparation and characterization of perovskite oxide photocatalyst[J]. Journal of Henan Normal University ( Natural Science Edition ), 2011,39(4):80−83,90. (蔡河山, 刘国光, 黎晓霞. 钙钛矿型氧化物光催化剂的制备及表征方法研究[J]. 河南师范大学学报(自然科学版), 2011,39(4):80−83,90.

    Cai Heshan, Liu Guoguang, Li Xiaoxia. Study on preparation and characterization of perovskite oxide photocatalyst[J]. Journal of Henan Normal University ( Natural Science Edition ), 2011,39(04): 80-83+9
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views (98) PDF downloads(30) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return