Volume 43 Issue 4
Sep.  2022
Turn off MathJax
Article Contents
Wang Xingjuan, Wang Yu, Zhu Liguang, Di Tiancheng, Jin Hebin, Piao Zhanlong. Composition design of CaO-Al2O3 series low reactivity continuous casting molding flux for high titanium steel[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(4): 134-141. doi: 10.7513/j.issn.1004-7638.2022.04.021
Citation: Wang Xingjuan, Wang Yu, Zhu Liguang, Di Tiancheng, Jin Hebin, Piao Zhanlong. Composition design of CaO-Al2O3 series low reactivity continuous casting molding flux for high titanium steel[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(4): 134-141. doi: 10.7513/j.issn.1004-7638.2022.04.021

Composition design of CaO-Al2O3 series low reactivity continuous casting molding flux for high titanium steel

doi: 10.7513/j.issn.1004-7638.2022.04.021
  • Received Date: 2022-03-11
  • Publish Date: 2022-09-14
  • In the continuous casting process of high-titanium steel, the traditional CaO-SiO2-Al2O3 mold slag will produce a violent steel/slag interface reaction, which will affect the continuous casting process stability. In order to weaken the interface reaction of steel/slag, a low reactivity mold flux for casting high titanium steel had been designed and the feasibility of CaO-Al2O3 based mold flux had been determined through the thermodynamic calculation of the steel slag interface by using Factsage thermodynamic software to calculate the composition range of the low reactivity mold flux. The viscosity and melting point of the three groups of mold slag were measured by rotary viscosity tester and automatic slag melting point and melting rate tester, and the newly developed mold slag suitable for continuous casting production was tested by VSgr-60-2000 vacuum atmosphere pressure sintering furnace. The CaO/Al2O3 in newly developed mold flux at 1.1, with addition of 10%CaF2, 7%MgO, 5%Na2O, 3%K2O, 13%B2O3 and 5%SiO2, its viscosity measured by viscometer is 0.413 Pa·s, and the melting point is 1106 ℃. After the steel/slag interface reaction test, the Ti content in the steel decreases by 0.03%, and the TiO2 content in the mold slag increases by 0.002%, and the interface reaction is weak. The newly developed mold slag can extremely suppress the progress of the interfacial reaction of steel/slag.
  • loading
  • [1]
    Mudali U K, Dayal R K, Gnanamoorthy J B. Corrosion studies on materials of construction for spent nuclear fuel reprocessing plant equipment[J]. Journal of Nuclear Materials, 1993,203(1):73−82. doi: 10.1016/0022-3115(93)90432-X
    [2]
    Zha Yongjin, Hu Shijie, Zhuo Lubin, et al. Research on the application prospect of titanium alloy oil pipe[J]. Drilling and Production Technology, 2017,40(4):1−3. (查永进, 胡世杰, 卓鲁斌, 等. 钛合金石油管材应用前景研究[J]. 钻采工艺, 2017,40(4):1−3. doi: 10.3969/J.ISSN.1006-768X.2017.04.01

    Zha Yongjin, Hu Shijie, Zhuo Lubin, et al. Research on the application prospect of titanium alloy oil pipe[J]. Drilling and Production Technology, 2017, 40(4): 1-3. doi: 10.3969/J.ISSN.1006-768X.2017.04.01
    [3]
    Pressouyre G M, Bernstein I M. An example of the effect of hydrogen trapping on hydrogen embrittlement[J]. Metallurgical Transactions A, 1981,12(5):835−844. doi: 10.1007/BF02648348
    [4]
    Xie Hui, Zhang Yuqin, Meng Zengdong, et al. Characteristics of β-titanium alloy and its application status and research progress in the field of orthopedics[J]. Orthopaedic Biomechanics Materials and Clinical Study, 2013,10(6):29−32. (谢辉, 张玉勤, 孟增东, 等. β钛合金特性及其在骨科领域的应用现状和研究进展[J]. 生物骨科材料与临床研究, 2013,10(6):29−32. doi: 10.3969/j.issn.1672-5972.2013.06.009

    Xie Hui, Zhang Yuqin, Meng Zengdong, et al. Characteristics of β-titanium alloy and its application status and research progress in the field of orthopedics[J]. Orthopaedic Biomechanics Materials and Clinical Study, 2013, 10(6): 29-32. doi: 10.3969/j.issn.1672-5972.2013.06.009
    [5]
    Zhu Jiang. Optimization of rolling process of wire rod containing Ti[J]. Bengang Technology, 2015,(2):4. (朱江. 含Ti焊丝盘条轧制工艺的优化[J]. 本钢技术, 2015,(2):4.

    Zhu Jiang. Optimization of rolling process of wire rod containing Ti[J]. Bengang Technology, 2015(2): 4.
    [6]
    Li X, Li F, Cui Y, et al. The effect of manganese content on mechanical properties of high titanium microalloyed steels[J]. Materials Science & Engineering A, 2016,677:340−348.
    [7]
    Hao Zhanquan, Chen Weiqing, Carsten L, et al. Effect of titanium oxide on properties of titanium-containing stainless steel continuous casting mold[J]. The Chinese Journal of Process Engineering, 2009,9(3):514−519. (郝占全, 陈伟庆, Carsten L, 等. 氧化钛对含钛不锈钢连铸保护渣性能的影响[J]. 过程工程学报, 2009,9(3):514−519. doi: 10.3321/j.issn:1009-606X.2009.03.017

    Hao Zhanquan, Chen Weiqing Carsten L, et al. Effect of titanium oxide on properties of titanium-containing stainless steel continuous casting mold[J]. The Chinese Journal of Process Engineering, 2009, 9(3): 514-519. doi: 10.3321/j.issn:1009-606X.2009.03.017
    [8]
    Jin Hebin, Ji Junde, Wang Shisong, et al. Influence of steel slag reaction on physicochemical properties of high titanium steel mold slag[J]. Continuous Casting, 2021,(6):59−64. (靳贺斌, 吉俊德, 王时松, 等. 钢渣反应对高钛钢保护渣物化特性的影响[J]. 连铸, 2021,(6):59−64. doi: 10.13228/j.boyuan.issn1005-4006.20210112

    Jin Hebin, Ji Junde, Wang Shisong, et al. Influence of steel slag reaction on physicochemical properties of high titanium steel mold slag[J]. Continuous Casting, 2021(6): 59-64. doi: 10.13228/j.boyuan.issn1005-4006.20210112
    [9]
    Kenneth B, Yin H B, Skoczylas G, et al. Development and evaluation of silicon-calcium and aluminum-calcium mold powder for high-alumina transformation-induced plasticity steel[J]. World Iron and Steel, 2013,13(3):8−17. (Kenneth B, Yin H B, Skoczylas G, 等. 高铝相变诱发塑性钢用硅钙和铝钙结晶器保护渣的开发评估[J]. 世界钢铁, 2013,13(3):8−17. doi: 10.3969/j.issn.1672-9587.2013.03.002

    Kenneth B, Yin H B, Skoczylas G, et al. Development and evaluation of silicon-calcium and aluminum-calcium mold powder for high-alumina transformation-induced plasticity steel[J]. World Iron and Steel, 2013, 13(3): 8-17. doi: 10.3969/j.issn.1672-9587.2013.03.002
    [10]
    Chen Zhuo, Zheng Ruiqi, Wang Qian. Effect of titanium inclusions on performance of mold flux during continuous casting of Ti-bearing steel[J]. Continuous Casting, 2021,(2):33−37. (陈卓, 郑睿琦, 王谦. 含钛夹杂物对连铸保护渣性能的影响[J]. 连铸, 2021,(2):33−37. doi: 10.13228/j.boyuan.issn1005-4006.20200144

    Chen Zhuo, Zhen Ruiqi, Wang Qian. Effect of titanium inclusions on performance of mold flux during continuous casting of Ti-bearing steel[J]. Continuous Casting, 2021(2): 33-37. doi: 10.13228/j.boyuan.issn1005-4006.20200144
    [11]
    Wang Wei, Qi Jie, Zhai Jun, et al. Effect of property evolution of mold slag on slab quality during continuous casting of titanium-containing ferritic stainless steel[J]. Steelmaking, 2021,37(5):76−79,84. (王伟, 亓捷, 翟俊, 等. 含钛铁素体不锈钢连铸过程保护渣性能演变对铸坯质量的影响[J]. 炼钢, 2021,37(5):76−79,84.

    Wang Wei, Qi Jie, Zhai Jun, et al. Effect of property evolution of mold slag on slab quality during continuous casting of titanium-containing ferritic stainless steel[J]. Steelmaking, 2021, 37(5): 76-79, 84.
    [12]
    王珍, 束奇峰, 周国治. TiO2替代含钛不锈钢保护渣中SiO2对渣系结晶性能的影响[C]//2012年全国冶金物理化学学术会议专辑(下册). 昆明: 中国有色金属学会, 2012: 208-214.

    Wang Zhen, Su Qifeng, Zhou Guozhi. Effect of TiO2 substituting SiO2 in titanium-containing stainless steel molding slag on crystallization properties of slag[C]//2012 National Metallurgical Physical Chemistry Academic Conference Album (Volume 2). Kunming: The Nonferrous Metals Society of China, 2012: 208-214.
    [13]
    Liu Liang, Zhang Jiongming, Wang Wei. Analysis of factors affecting the change of titanium content in refining and continuous casting of titanium-containing stainless steel[J]. Foundry Technology, 2016,(10):2169−2172. (刘亮, 张炯明, 王伟. 含钛不锈钢精炼连铸中钛含量变化影响因素分析[J]. 铸造技术, 2016,(10):2169−2172. doi: 10.16410/j.issn1000-8365.2016.10.032

    Liu Liang, Zhang Jiongming, Wang Wei. Analysis of factors affecting the change of titanium content in refining and continuous casting of titanium-containing stainless steel[J]. Foundry Technology, 2016(10): 2169-2172. doi: 10.16410/j.issn1000-8365.2016.10.032
    [14]
    陈涛. 钛微合金化焊接用钢质量控制研究[D]. 北京: 北京科技大学, 2017.

    Chen Tao. Research on quality control of titanium microalloyed welding steel[D]. Beijing: University of Science and Technology Beijing, 2017.
    [15]
    Kim W Y, Jo J O, Lee C O, et al. Thermodynamic relation between aluminum and titanium in liquid iron[J]. ISIJ International, 2008,48(1):17−22. doi: 10.2355/isijinternational.48.17
    [16]
    Chen Z, Xu K P, He S P, et al. Thermodynamic calculation on the reactivity between slag and Ti-stabilized stainless steel[C]//8th International Symposium on High-temperature Metallurgical Processing. United states: 2017: 169–176.
    [17]
    Pan Weijie, Li Min, Zhu Lilong, et al. Effect of Na2O on properties of ultra-basicity continuous casting molding powder[J]. Iron and Steel, 2022,57(1):93−101. (潘伟杰, 李民, 朱礼龙, 等. Na2O对超高碱度连铸保护渣性能的影响[J]. 钢铁, 2022,57(1):93−101.

    Pan Weijie, Li Min, Zhu Lilong, et al. Effect of Na2O on properties of ultra-basicity continuous casting molding powder[J]. Iron and Steel, 2022, 57(1): 93-101.
    [18]
    Zhu Liguang, Zhang Xiaoshi, Wang Xingjuan, et al. Analysis of melting characteristics of special mold flux based on CaO-Al2O3 for high titanium welding wire steel[J]. China Metallurgy, 2020,30(10):9−16. (朱立光, 张晓仕, 王杏娟, 等. 高钛焊丝钢CaO-Al2O3基专用保护渣熔化特性分析[J]. 中国冶金, 2020,30(10):9−16.

    Zhu Liguang, Zhang Xiaoshi, Wang Xingjuan, et al. Analysis of melting characteristics of special mold flux based on CaO-Al2O3 for high titanium welding wire steel[J]. China Metallurgy, 2020, 30(10): 9-16.
    [19]
    Liu Ke, Han Yihua, Yang Fan, et al. Effect of MgO on microstructure of CaO-Al2O3-based quaternary molding slag[J]. Iron and Steel, 2020,55(5):52−58. (刘克, 韩毅华, 杨帆, 等. MgO对CaO-Al2O3基四元系保护渣熔渣微结构的影响[J]. 钢铁, 2020,55(5):52−58.

    Liu Ke, Han Yihua, Yang Fan, et al. Effect of MgO on microstructure of CaO-Al2O3-based quaternary molding slag [J]. Iron and Steel, 2020, 55(5): 52-58.
    [20]
    Wang Xingjuan, Jin Hebin, Zhu Liguang, et al. Influence of B2O3 on properties and structure of CaO-Al2O3-SiO2-based continuous casting molding flux[J]. Materials Review, 2019,33(8):1395−1400. (王杏娟, 靳贺斌, 朱立光, 等. B2O3对CaO-Al2O3-SiO2基连铸保护渣性能及结构的影响[J]. 材料导报, 2019,33(8):1395−1400. doi: 10.11896/cldb.19010018

    Wang Xinjuan, Jin Hebin, Zhu Liguang, et al. Influence of B2O3 on properties and structure of CaO-Al2O3-SiO2-based continuous casting molding flux[J]. Materials Review, 2019, 33(8): 1395-1400. doi: 10.11896/cldb.19010018
    [21]
    西峡龙成冶金材料有限公司. 含钛板坯不锈钢专用连铸结晶器保护渣及其生产工艺: 中国, CN200710193114.2[P]. 2008-07-16.

    Xixia Longcheng Metallurgical Materials Co. , Ltd. . Continuous casting mold powder for stainless steel slab containing titanium and its production process: China, CN200710193114.2[P]. 2008-07-16.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(5)

    Article Metrics

    Article views (66) PDF downloads(28) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return