Volume 43 Issue 4
Sep.  2022
Turn off MathJax
Article Contents
Liu Hanhua. Study on hydrogen embrittlement resistance of Ti-microalloying hot forming steel for automobile[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(4): 178-183. doi: 10.7513/j.issn.1004-7638.2022.04.027
Citation: Liu Hanhua. Study on hydrogen embrittlement resistance of Ti-microalloying hot forming steel for automobile[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(4): 178-183. doi: 10.7513/j.issn.1004-7638.2022.04.027

Study on hydrogen embrittlement resistance of Ti-microalloying hot forming steel for automobile

doi: 10.7513/j.issn.1004-7638.2022.04.027
  • Received Date: 2021-08-27
  • Publish Date: 2022-09-14
  • The hydrogen embrittlement resistance of two kinds of Nb-Mo hot forming steels with different Ti contents for automobile was studied by slow strain rate tensile test along with hydrogen charging and hydrogen desorption test in this paper. The results show that with increasing titanium content from 0.015% to 0.03%, the original austenite grain size of Nb-Mo hot forming steel decreases from 5.40 μm to 4.35 μm. Besides, the number of grain boundaries increased, and newly precipitated TiC particles are coarse, the size of (Nb, Ti) C, (Nb, Mo, Ti) C particles increases remarkably. The increase of Ti content leads to the precipitation of coarse Ti(C, N) in Nb-Mo hot forming steel, which promotes the occurrence of hydrogen embrittlement fracture. However, the activation energy of hydrogen desorption corresponding to the high temperature peak of hydrogen desorption is increased from 83.4 kJ/mol to 105.9 kJ/mol due to the coarse carbide particles. The energy of capturing irreversible hydrogen atom is increased, which can effectively reduce the amount of diffusible hydrogen atom in the steel. The increasing number of austenite grain boundaries can enable the hydrogen atom distribution more uniform, and finally improves the hydrogen embrittlement resistance of Nb-Mo hot forming steel.
  • loading
  • [1]
    Gao Yunkai, Gao Dawei, Yu Haiyan, et al. Hot forming technology of high strength steel for automobile[J]. Automobile Technology, 2010,(8):56−60. (高云凯, 高大威, 余海燕, 等. 汽车用高强度钢热成型技术[J]. 汽车技术, 2010,(8):56−60. doi: 10.3969/j.issn.1000-3703.2010.08.014

    Gao Yunkai, Gao Dawei, Yu Haiyan, et al. Hot forming technology of high strength steel for automobile[J]. Automobile Technology, 2010 (8): 56-60 doi: 10.3969/j.issn.1000-3703.2010.08.014
    [2]
    Cheng Yajie, Sun Bintang, Liao Qingliang, et al. Effect of starting rolling temperature on hydrogen induced delayed cracking of Nb microalloyed hot forming steel[J]. Journal of Beijing University of Science and Technology, 2016,38(10):1423−1428. (程亚杰, 孙斌堂, 廖庆亮, 等. 开轧温度对铌微合金化热成型钢氢致延迟开裂性能的影响[J]. 北京科技大学学报, 2016,38(10):1423−1428.

    Cheng Yajie, Sun Bintang, Liao Qingliang, et al. Effect of starting rolling temperature on hydrogen induced delayed cracking of Nb microalloyed hot forming steel[J]. Journal of Beijing University of Science and Technology, 2016, 38 (10): 1423-1428
    [3]
    Chang Kaidi, Gu Jialin, Fang Hongsheng, et al. Hydrogen embrittlement sensitivity of new 1500 MPa high strength steel[J]. Metal Heat Treatment, 2002,27(3):8−11. (常开地, 顾家琳, 方鸿生, 等. 新型1500 MPa级高强钢的氢脆敏感性研究[J]. 金属热处理, 2002,27(3):8−11. doi: 10.3969/j.issn.0254-6051.2002.03.003

    Chang Kaidi, Gu Jialin, Fang Hongsheng, et al. Hydrogen embrittlement sensitivity of new 1500 MPa high strength steel[J]. Metal Heat Treatment, 2002, 27 (3): 8-11 doi: 10.3969/j.issn.0254-6051.2002.03.003
    [4]
    Zhang S, Huang Y, Sun B, et al. Effect of Nb on hydrogen-induced delayed fracture in high strength hot stamping steels[J]. Mater. Sci. Eng., 2015,626:136−143. doi: 10.1016/j.msea.2014.12.051
    [5]
    Mohrbacher H. Property optimization in as-quenched martensitic steel bymolybdenum and niobium alloying[J]. Metals, 2018,(8):234−255.
    [6]
    Takahashi J, Kawakami K, Tarui T. Direct observation of hydrogen trapping sites in vanadium carbide precipitation steel by atom probe tomography[J]. Scripta Mater., 2012,67:213−216. doi: 10.1016/j.scriptamat.2012.04.022
    [7]
    Wei F G, Hara T, Tsuzaki K. Precise determination of the activation energy for desorption of hydrogen in two Ti-added steels by a single thermal-desorption spectrum[J]. Metall. Mater. Trans. B, 2004,35:587−597. doi: 10.1007/s11663-004-0057-x
    [8]
    Chen Kang, Xia Bin, Xu Le, et al. Hydrogen embrittlement sensitivity of 2000 MPa martensitic steel[J]. Journal of Material Heat Treatment, 2017,(8):76−82. (谌康, 夏彬, 徐乐, 等. 2000 MPa级马氏体钢的氢脆敏感性[J]. 材料热处理学报, 2017,(8):76−82.

    Chen Kang, Xia Bin, Xu Le, et al. Hydrogen embrittlement sensitivity of 2000 mPa martensitic steel[J]. Journal of Material Heat Treatment, 2017 (8): 76-82
    [9]
    Wu Guangzong, Wang Maoqiu, Gan Guoyou, et al. Study on hydrogen diffusion in two kinds of martensitic steels by TDS method[J]. Journal of Iron and Steel Research, 2011,(9):42−45. (武光宗, 王毛球, 甘国友, 等. 利用TDS方法研究氢在两种马氏体钢中的扩散[J]. 钢铁研究学报, 2011,(9):42−45.

    Wu Guangzong, Wang Maoqiu, Gan Guoyou, et al. Study on hydrogen diffusion in two kinds of martensitic steels by TDS method[J]. Journal of Iron and Steel Research, 2011 (9): 42-45
    [10]
    Pan Chuan, Li Zhengbang, Tian Zhiling, et al. Quantitative study on hydrogen embrittlement of stainless steel induced by hydrogen and hydrogen induced martensite[J]. Chinese Science E:Technical Science, 2002,3(3):57−63. (潘川, 李正邦, 田志凌, 等. 氢和氢致马氏体导致不锈钢氢脆的定量研究[J]. 中国科学E辑:技术科学, 2002,3(3):57−63.

    Pan Chuan, Li Zhengbang, Tian Zhiling, et al. Quantitative study on hydrogen embrittlement of stainless steel induced by hydrogen and hydrogen induced martensite[J]. Chinese Science E: Technical Science, 2002, 3 (3): 57-63
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views (63) PDF downloads(15) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return