Volume 43 Issue 4
Sep.  2022
Turn off MathJax
Article Contents
Yang Dawei, Deng Yong, Dong Xuejiao, Zhao Jizhong. Analysis on typical rail damage of high speed railway[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(4): 184-190. doi: 10.7513/j.issn.1004-7638.2022.04.028
Citation: Yang Dawei, Deng Yong, Dong Xuejiao, Zhao Jizhong. Analysis on typical rail damage of high speed railway[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(4): 184-190. doi: 10.7513/j.issn.1004-7638.2022.04.028

Analysis on typical rail damage of high speed railway

doi: 10.7513/j.issn.1004-7638.2022.04.028
  • Received Date: 2021-05-18
  • Publish Date: 2022-09-14
  • Rail damage restricts the stable contact between wheel and rail and affects the driving safety. Regarding the damage of a railway rail in on-line service, the multi-directional inspections had been carried out by using Axio observer 5m metallographic microscope, Empyrean X-ray diffractometer, sigma 500 scanning electron microscope and Falcon 500 microhardness tester. Based on the finite element simulation technology, the instantaneous temperature field distribution of the rail contact part under the abnormal starting condition of the wheel was reproduced. The analysis results show that the rail damage is a typical scratch with a damage depth of more than 2 mm. With the increase of tread depth, the volume fraction of martensite gradually decreases and the volume fraction of retained austenite gradually increases, so that the corresponding microhardness value gradually decreases. The retained austenite is surrounded by martensite structure, which increases the resistance to the continuous propagation of microcracks and passivates the crack tip. Under the joint action of wheel rail surface shear stress, it provides a channel for microcrack propagation, induces microcrack transverse propagation, and finally leads to peeling failure in rail scratch area. The computer simulation results are agreement with the actual damage characteristics.
  • loading
  • [1]
    Jin Xuesong, Zhang Jiye, Wen Zefeng, et al. Overview of phenomena of rolling contact fatigue of wheel/rail[J]. Journal of Mechanical Strength, 2002,24(2):250−257. (金学松, 张继业, 温泽峰, 等. 轮轨滚动接触疲劳现象分析[J]. 机械强度, 2002,24(2):250−257. doi: 10.3321/j.issn:1001-9669.2002.02.023

    Jin Xuesong, Zhang Jiye, Wen Zefeng, et al. Overview of phenomena of rolling contact fatigue of wheel/rail[J]. Journal of Mechanical Strength, 2002, 24(2): 250-257. doi: 10.3321/j.issn:1001-9669.2002.02.023
    [2]
    Pal S, Valente C, Daniel W, et al. Metallurgical and physical understanding of rail squat initiation and propagation[J]. Wear, 2012,284:30−42.
    [3]
    Sarvesh Pal, William J T Daniel, Carlos H G Valente, et al. Surface damage on new AS60 rail caused by wheel slip[J]. Engineering Failure Analysis, 2012,(22):152−165.
    [4]
    Zhou Y, Peng J F, Luo Z P, et al. Phase and microstructural evolution in white etching layer of a pearlitic steel during rolling-sliding friction[J]. Wear, 2016,(362-363):8−17.
    [5]
    Deng Yong, Deng Jianhui. Reason analysis on defects in high-speed railway rail[J]. PTCA (Part A:Phys. Test), 2013,(11):766−769. (邓勇, 邓建辉. 某高速铁路钢轨伤损原因分析[J]. 理化检验(物理分册), 2013,(11):766−769.

    Deng Yong, Deng Jianhui. Reason analysis on defects in high-speed railway rail[J]. PTCA (Part A: Phys. Test), 2013(11): 766-769.
    [6]
    Wu Lei, Wen Zefeng, Jin Xuesong. Wheel/rail frictional temperature analysis under wheel rolling[J]. Engineering Mechanics, 2007,24(10):150−155. (吴磊, 温泽峰, 金学松. 车轮原地打滑时轮轨接触界面摩擦温升分析[J]. 工程力学, 2007,24(10):150−155. doi: 10.3969/j.issn.1000-4750.2007.10.026

    Wu Lei, Wen Zefeng, Jin Xuesong. Wheel/rail frictional temperature analysis under wheel rolling[J]. Engineering Mechanics, 2007, 24(10): 150-155. doi: 10.3969/j.issn.1000-4750.2007.10.026
    [7]
    苏航, 潘涛, 杨才福, 等. 车轮钢摩擦热致相变及损伤机理研究[C]// 中国铁道学会2004年度学术活动优秀论文评奖论文集. 北京: 中国铁道学会, 2005.

    Su Hang, Pan Tao, Yang Caifu, et al. The friction heat induced phase transformation and spalling mechanism of train wheel steel[C]// Collection of Excellent Papers in 2004 Academic Activities of China Railway Society. Beijing: China Railway Society, 2005.
    [8]
    Liu Haibo, Li Yanlei, Shi Qilong. Thermal stress simulation analysis of urban rail transit vehicles tread braking[J]. Mechanical Engineering & Automation, 2012,(1):49−51. (刘海波, 厉砚磊, 石启龙. 城市轨道交通车辆踏面制动热应力仿真分析[J]. 机械工程与自动化, 2012,(1):49−51. doi: 10.3969/j.issn.1672-6413.2012.01.019

    Liu Haibo, Li Yanlei, Shi Qilong. Thermal stress simulation analysis of urban rail transit vehicles tread braking[J]. Mechanical Engineering & Automation, 2012(1): 49-51. doi: 10.3969/j.issn.1672-6413.2012.01.019
    [9]
    Wang Haixin, Wu Yaping, Liu Zheng. Influence analysis of coefficients of convective heat transfer on the characteristic of wheel/rail sliding contact[J]. Journal of Railway Science and Engineering, 2018,15(2):336−342. (王海新, 吴亚平, 刘振. 对流换热系数对轮轨滑动接触特性的影响分析[J]. 铁道科学与工程学报, 2018,15(2):336−342. doi: 10.3969/j.issn.1672-7029.2018.02.009

    Wang Haixin, Wu Yaping, Liu Zheng. Influence analysis of coefficients of convective heat transfer on the characteristic of wheel/rail sliding contact[J]. Journal of Railway Science and Engineering, 2018, 15(2): 336-342. doi: 10.3969/j.issn.1672-7029.2018.02.009
    [10]
    王伟. 基于ANSYS的轮轨摩擦生热分析[D]. 成都: 西南交通大学, 2011.

    Wang Wei. Analysis of the frictional heating of wheel-rail based on ANSYS[D]. Chengdu: Southwest Jiaotong University, 2011.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(1)

    Article Metrics

    Article views (124) PDF downloads(23) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return