Efficient metallurgical extraction of vanadium slag: Sodium-magnesium composite roasting vanadium extraction process
-
摘要: 钒渣钠化焙烧过程中碱土金属会很容易生成难溶于水的钙/镁钒酸盐,导致钒收率下降。然而,适量添加氧化镁可诱导生成高溶解度的钠镁复合钒酸盐(Na6Mg2V4O15)。基于此,创新性提出钒渣钠镁复合焙烧提钒工艺。试验结果表明,Na6Mg2V4O15在钠化熟料水浸条件(pH≈11)下表现出优异的溶解性能;当Na2CO3配比为20%、焙烧温度875 ℃时,钒渣钠化焙烧钒浸出率最高可达85.30%;而采用钠镁复合焙烧,加入3%的MgO即可将Na2CO3配比降至18%,并将钒浸出率提升至90.38%。焙烧熟料和浸出渣的物相分析结果表明,复合焙烧有效促进了钠镁复合钒酸盐的焙烧转化及浸出。采用低成本镁盐部分替代钠盐进行复合焙烧,可为钠化提钒工艺降本增效提供新思路。Abstract: Alkaline earth metals can easily form water-insoluble calcium/magnesium vanadates during sodium roasting of vanadium slag, leading to a decrease in vanadium recovery rate. However, the moderate MgO addition facilitates the formation of a highly soluble sodium-magnesium vanadate (Na6Mg2V4O15). Based on this discovery, we propose an innovative sodium-magnesium composite roasting process for the vanadium extraction from vanadium slag. Experimental results reveal that Na6Mg2V4O15 exhibits superior dissolution performance under the alkaline leaching conditions (pH~11) of the typical sodium-roasted vanadium slag. The highest vanadium leaching efficiency of 85.30% is obtained under the conventional sodium roasting conditions (20% Na2CO3 dosage, 875 ℃). By using the composite roasting process with 3% MgO addition, the Na2CO3 dosage is reduced to 18% and the leaching rate is increase to 90.38%. Phase composition analysis of the roasted samples and leached residues indicates that composite roasting promotes the formation of sodium-magnesium vanadate and its subsequent dissolution. This cost-effective strategy of partially substituting sodium salts with magnesium salts provides a novel approach for optimizing conventional sodium roasting processes, leading to the reduction of costs and increase of efficiency in the sodium vanadium extraction process.
-
图 2 预测的Na2O-MgO-V2O5体系液相投影面[21]
Figure 2. The predicted liquid projection of the Na2O-MgO-V2O5 system
表 1 钒渣精粉化学成分
Table 1. Chemical composition of vanadium slag concentrate
% V2O5 TFe TiO2 SiO2 MnO CaO MgO Al2O3 Cr2O3 16.50 32.59 10.98 9.99 7.88 2.18 1.86 1.21 1.94 -
[1] DONG Z H, YANG R L, YANG R C, et al. Research progress on the comprehensive utilization of converter vanadium slag[J]. Sustainable Mining and Metallurgy, 2024, 40(4): 18-23,31. (董自慧, 杨瑞兰, 杨瑞臣, 等. 转炉钒渣综合利用研究进展[J]. 绿色矿冶, 2024, 40(4): 18-23,31.DONG Z H, YANG R L, YANG R C, et al. Research progress on the comprehensive utilization of converter vanadium slag[J]. Sustainable Mining and Metallurgy, 2024, 40(4): 18-23,31. [2] GAO F, OLAVIWOLA A U, LIU B, et al. Review of vanadium production part I: primary resources[J]. Mineral Processing and Extractive Metallurgy Review, 2022, 43(4): 466-488. doi: 10.1080/08827508.2021.1883013 [3] NASIMIFAR A, MEHRABANI J V. A review on the extraction of vanadium pentoxide from primary, secondary, and co-product sources[J]. International Journal of Mining and Geo-Engineering, 2022, 56(4): 361-382. [4] JIA L, ZHANG Y, TAO L, et al. A methodology for assessing cleaner production in the vanadium extraction industry[J]. Journal of Cleaner Production, 2014, 84: 598-605. doi: 10.1016/j.jclepro.2013.05.016 [5] SIMANDL G J, PARADIS S. Vanadium as a critical material: economic geology with emphasis on market and the main deposit types[J]. Applied Earth Science, 2022, 131(4): 218-236. doi: 10.1080/25726838.2022.2102883 [6] RODBY K E, JAFFE R L, OLIVETTI E A, et al. Materials availability and supply chain considerations for vanadium in grid-scale redox flow batteries[J]. Journal of Power Sources, 2023, 560: 232605. doi: 10.1016/j.jpowsour.2022.232605 [7] BLEECKER W F. Process of producing copper, lead, or iron vanadate from vanadiferous ores: U. S. Patent 1, 015, 469[P]. 1912-1-23. [8] JENA P K, BROCCHI E A. Halide metallurgy of refractory metals[J]. Mineral Processing and Extractive Metullargy Review, 1992, 10(1): 29-40. doi: 10.1080/08827509208914073 [9] LI H Y, FANG H X, WANG K, et al. Asynchronous extraction of vanadium and chromium from vanadium slag by stepwise sodium roasting–water leaching[J]. Hydrometallurgy, 2015, 156: 124-135. doi: 10.1016/j.hydromet.2015.06.003 [10] LI L J, CHEN D H, BAI R G, et al. Research progress of extraction technology for vanadium & chromium from vanadium slags[J]. Multipurpose Utilization of Mineral Resources, 2013(2): 7-11. (李兰杰, 陈东辉, 白瑞国, 等. 钒渣中钒铬提取技术研究进展[J]. 矿产综合利用, 2013(2): 7-11. doi: 10.3969/j.issn.1000-6532.2013.02.003LI L J, CHEN D H, BAI R G, et al. Research progress of extraction technology for vanadium & chromium from vanadium slags[J]. Multipurpose Utilization of Mineral Resources, 2013(2): 7-11. doi: 10.3969/j.issn.1000-6532.2013.02.003 [11] WANG Y. Low-temperature reduction degradation behavior of vanadium-titanium pellet in H2-CO mixtures[D]. Chongqing: Chongqing University, 2022. (王月. H2-CO作用下钒钛矿球团低温还原粉化行为研究[D]. 重庆: 重庆大学, 2022.WANG Y. Low-temperature reduction degradation behavior of vanadium-titanium pellet in H2-CO mixtures[D]. Chongqing: Chongqing University, 2022. [12] JIN E G, ZHOU Y, CHEN J, et al. Research progress on treatment and resource utilization technology of manure and sewage in dairy farm[J]. Animal Husbandry and Feed Science, 2019, 41(1): 82-87. (金尔光, 周源, 陈洁, 等. 奶牛场粪污处理与资源化利用技术研究进展[J]. 畜牧与饲料科学, 2020, 41(1): 82-87.JIN E G, ZHOU Y, CHEN J, et al. Research progress on treatment and resource utilization technology of manure and sewage in dairy farm[J]. Animal Husbandry and Feed Science, 2019, 41(1): 82-87. [13] HU P W, XIE Z C, HU B, et al. Comprehensive utilization status and development of vanadium-bearing solid wastes[J]. Conservation and Utilization of Mineral Resources, 2020, 40(5): 144-152. (胡佩伟, 谢志诚, 胡兵, 等. 含钒固废综合利用现状及发展[J]. 矿产保护与利用, 2020, 40(5): 144-152.HU P W, XIE Z C, HU B, et al. Comprehensive utilization status and development of vanadium-bearing solid wastes[J]. Conservation and Utilization of Mineral Resources, 2020, 40(5): 144-152. [14] WANG X. Study on extraction of vanadium from vanadium slag through composite roasting with CaO/MgO and acid leaching process[D]. Chongqing: Chongqing University, 2022. (王鑫. 钒渣钙镁复合焙烧—酸浸提钒工艺研究[D]. 重庆: 重庆大学, 2022.WANG X. Study on extraction of vanadium from vanadium slag through composite roasting with CaO/MgO and acid leaching process[D]. Chongqing: Chongqing University, 2022. [15] WEN J, JIANG T, XU Y, et al. Efficient extraction and separation of vanadium and chromium in high chromium vanadium slag by sodium salt roasting-(NH4)2SO4 leaching[J]. Journal of industrial and engineering chemistry, 2019, 71: 327-335. doi: 10.1016/j.jiec.2018.11.043 [16] LI M, XIAO L, LIU J J, et al. Effective extraction of vanadium and chromium from high chromium content vanadium slag by sodium roasting and water leaching[C]//Materials Science Forum. Trans Tech Publications Ltd., 2016, 863: 144-148. [17] YIN Z Q, LI Q W, FU Z B, et al. Technology research on sodium salt roasting of vanadium slag pellet[J]. Iron Steel Vanadium Titanium, 2016, 37(1): 12-15, 20. (殷兆迁, 李千文, 付自碧, 等. 钒渣钠化球团化焙烧技术研究[J]. 钢铁钒钛, 2016, 37(1): 12-15, 20. doi: 10.7513/j.issn.1004-7638.2016.01.003YIN Z Q, LI Q W, FU Z B, et al. Technology research on sodium salt roasting of vanadium slag pellet[J]. Iron Steel Vanadium Titanium, 2016, 37(1): 12-15, 20. doi: 10.7513/j.issn.1004-7638.2016.01.003 [18] LI W. Study on the reaction behavior in sodium roasting of high vanadium slag[D]. Shenyang: Northeastern University, 2014. (李尉. 高钒渣钠化焙烧反应行为研究[D]. 沈阳: 东北大学, 2014.LI W. Study on the reaction behavior in sodium roasting of high vanadium slag[D]. Shenyang: Northeastern University, 2014. [19] YANG M, YANG H, TIAN S, et al. Effect of mechanical activation on extraction of vanadium from chromium-containing vanadate solution by calcification and carbonization[J]. Hydrometallurgy, 2021, 201: 105591. doi: 10.1016/j.hydromet.2021.105591 [20] LIU D, XUE X X, YANG H. Reaction mechanism of magnesium in roasting of vanadium slag[J]. Anais da Academia Brasileira de Ciências, 2020, 92(2): e20181062. [21] PEI G S. Thermodynamic modeling of CaO-MgO-R2O-V2O5 (R=Li, Na, K, Rb, and Cs) systems and its applications[D]. Chongqing: Chongqing University, 2023. (裴贵尚. CaO-MgO-R2O-V2O5(R=Li、Na、K、Rb和Cs)体系热力学模型构建及其应用[D]. 重庆: 重庆大学, 2023.PEI G S. Thermodynamic modeling of CaO-MgO-R2O-V2O5 (R=Li, Na, K, Rb, and Cs) systems and its applications[D]. Chongqing: Chongqing University, 2023. -
下载: