留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钙法钒渣熟料流态化浸出工艺研究

汪劲鹏 彭毅

汪劲鹏, 彭毅. 钙法钒渣熟料流态化浸出工艺研究[J]. 钢铁钒钛, 2021, 42(4): 1-5. doi: 10.7513/j.issn.1004-7638.2021.04.001
引用本文: 汪劲鹏, 彭毅. 钙法钒渣熟料流态化浸出工艺研究[J]. 钢铁钒钛, 2021, 42(4): 1-5. doi: 10.7513/j.issn.1004-7638.2021.04.001
Wang Jingpeng, Peng Yi. Study on fluidized leaching of calcified vanadium slag clinker[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(4): 1-5. doi: 10.7513/j.issn.1004-7638.2021.04.001
Citation: Wang Jingpeng, Peng Yi. Study on fluidized leaching of calcified vanadium slag clinker[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(4): 1-5. doi: 10.7513/j.issn.1004-7638.2021.04.001

钙法钒渣熟料流态化浸出工艺研究

doi: 10.7513/j.issn.1004-7638.2021.04.001
详细信息
    作者简介:

    汪劲鹏(1991−),男,湖北黄冈人,高级工程师,主要从事钒资源高效提取及利用研究,E-mail:1257549530@qq.com

  • 中图分类号: TF841.3

Study on fluidized leaching of calcified vanadium slag clinker

  • 摘要: 利用散式直管流化床进行了钙法钒渣熟料流态化浸出工艺研究,测定了熟料颗粒的粒度分布并分成7个粒级开展试验,首先计算出不同粒级下的临界速率及带出速率,考察了钒渣粒度对表观流化速率、停留时间分布以及钒浸出率的影响。结果表明,不同粒级的临界流化速率和停留时间差异较大,且存在显著的短路或者沟流现象,需分级处理,其中−39 μm颗粒的浸出效果最好,尾渣残钒为0.54%,钒浸出率可达94%。
  • 图  1  直管流化床结构示意

    Figure  1.  Structure of straight tube fluidized bed reactor

    图  2  不同粒级颗粒的流化速率

    Figure  2.  Fluidization velocity of different size fractions

    图  3  不同粒度颗粒的尾渣残钒和浸出率

    Figure  3.  Residual vanadium in tailings and vanadium leaching rate of clinkers with different particle sizes

    图  4  不同粒度颗粒的浸出液pH和钒浓度

    Figure  4.  pH and vanadium concentration of leaching solutions from clinkers with different particle sizes

    图  5  不同粒级颗粒的停留时间分布规律

    Figure  5.  Residence time distribution of particles of different size fractions

    表  1  钙化熟料主要化学成分

    Table  1.   Main chemical compositions of calcified vanadium slag clinker %

    V2O5TFeSiO2MnOTiO2Al2O3MgOCaOCr2O3P2O5
    16.1025.5013.779.1711.521.521.868.161.910.13
    下载: 导出CSV

    表  2  钙化熟料粒度分布及密度

    Table  2.   Particle size distribution and density of calcified vanadium slag clinker

    粒度/μm含量/%密度/(g·cm−3)
    +1805.852.95
    −180~+1257.583.17
    −125~+957.623.27
    −95~+7413.473.24
    −74~+637.033.33
    −63~+3931.753.44
    −3926.703.58
    下载: 导出CSV

    表  3  各粒级颗粒的临界流化速度和带出速度

    Table  3.   Critical fluidization velocity and entrainment velocity of different size fractions

    粒级/μm平均粒径/μm临界流化速度
    Umf/(cm·s−1)
    带出速度
    Ut/(cm·s−1)
    +1801800.472.31
    −180~+1251500.372.02
    −125~951110.211.70
    −95~+74850.120.99
    −74~+63688.30×10−20.66
    −63~+39494.58×10−20.36
    −39393.00×10−20.24
    下载: 导出CSV
  • [1] Yin Danfeng, Peng Yi, Sun Zhaohui, et al. Influencing factors of calcified roasting and thermal analysis to the process of vanadium slag produced from Pangang[J]. Metal Mine, 2012,(4):91−94. (尹丹凤, 彭毅, 孙朝晖, 等. 攀钢钒渣钙化焙烧影响因素研究及过程热分析[J]. 金属矿山, 2012,(4):91−94. doi: 10.3969/j.issn.1001-1250.2012.04.024
    [2] Fu Zibi. Experimental research on vanadium extraction by calcified roasting and acid leaching[J]. Iron Steel Vanadium Titanium, 2014,35(1):1−6. (付自碧. 钒渣钙化焙烧—酸浸提钒试验研究[J]. 钢铁钒钛, 2014,35(1):1−6. doi: 10.7513/j.issn.1004-7638.2014.01.001
    [3] Ye Lu. Research on dissolution of vanadium in acid leaching process of calcified roasting clinker with vanadium slag[J]. Iron Steel Vanadium Titanium, 2017,38(5):20−25. (叶露. 钒渣钙化焙烧熟料酸浸过程钒溶解规律研究[J]. 钢铁钒钛, 2017,38(5):20−25. doi: 10.7513/j.issn.1004-7638.2017.05.004
    [4] Li Hongzhong, Kwauk Mooson. Review and prospect of fluidization science and technology[J]. CIESC Jorunal, 2013,64(1):52−62. (李洪钟, 郭慕孙. 回眸与展望流态化科学与技术[J]. 化工学报, 2013,64(1):52−62. doi: 10.3969/j.issn.0438-1157.2013.01.008
    [5] (张楚. 快速流态化统一动力学模型的构建与模拟研究[D]. 上海: 上海交通大学, 2013.)

    Zhang Chu. Research on the unified model for fast fluidization dynamics: construction and simulation[D]. Shanghai: Shanghai Jiao Tong University, 2013.
    [6] Zhang Yuanfu, Chen Jiarong Huang Guangyu, et al. Study on fluidization leaching germanium-bearing smoke of zinc oxide[J]. Chinese Journal of Rare Metals, 1999,23(2):90−94. (张元福, 陈家蓉, 黄光裕, 等. 氧化锌烟尘的流态化浸出研究[J]. 稀有金属, 1999,23(2):90−94. doi: 10.3969/j.issn.0258-7076.1999.02.003
    [7] (王辉. 锌焙砂流态化浸出新工艺研究[C]//中国科学技术协会首届学术年会论文集. 杭州: 中国科学技术协会学会学术部, 1999: 993.)

    Wang Hui. Study on new fluidization leaching process of zinc calcine[C]//Proceedings of the First Academic Annual Meeting of China Association for Science and Technology. Hangzhou: Academic Department of China Association for Science and Technology, 1999: 993.
    [8] Ouyang Hongyong, Yang Zhi, Xiong Xueliang, et al. Study on elevated temperature curve and fluidization leaching behaviour of ilmenite in microwave field[J]. Mining and Metallurgical Engineering, 2010,30(2):73−75. (欧阳红勇, 杨智, 熊雪良, 等. 微波场中钛铁矿的升温曲线及流态化浸出行为研究[J]. 矿冶工程, 2010,30(2):73−75. doi: 10.3969/j.issn.0253-6099.2010.02.019
    [9] Li Dongqin. Study on particles residence time distribution in low-temperature chlorinator[J]. Iron Steel Vanadium Titanium, 2017,38(3):30−33. (李冬勤. 低温氯化炉内颗粒停留时间分布研究[J]. 钢铁钒钛, 2017,38(3):30−33. doi: 10.7513/j.issn.1004-7638.2017.03.005
    [10] Li Xiaobin, Li Bin, Peng Zhihong, et al. Fluidization washing of the red mud[J]. The Chinese Journal of Process Engineering, 2010,10(3):445−450. (李小斌, 李斌, 彭志宏, 等. 赤泥流态化洗涤[J]. 过程工程学报, 2010,10(3):445−450.
    [11] Jiao Weitang, Feng Xudong. Study of rtd in two-phase circulating fluidized bed[J]. Journal of Beijing Technology and Business University (Natural Science Edition), 2005,23(5):14−16. (焦伟堂, 冯旭东. 气液两相循环流化床停留时间分布的研究[J]. 北京工商大学学报(自然科学版), 2005,23(5):14−16.
    [12] (白瑞国, 李兰杰, 陈东辉, 等. 钒渣全湿法流态化提钒的方法, 中国专利: CN104674015A[P]. 2015.)

    Bai Ruiguo, Li Lanjie, Chen Donghui, et al. Wet fluidization method for vanadium extraction from vanadium slag, Chinese patent: CN104674015A[P]. 2015.
    [13] (郭继科, 付自碧, 殷兆迁, 等. 钠化钒渣流态化提钒的方法, 中国专利: CN106086441A[P]. 2016.)

    Guo Jike, Fu Zibi, Yin Zhaoqian, et al. Fluidized vanadium extraction from sodium vanadium slag, Chinese patent: CN106086441A[P]. 2016.
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  598
  • HTML全文浏览量:  173
  • PDF下载量:  105
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-21
  • 刊出日期:  2021-08-10

目录

    /

    返回文章
    返回