Effect of ESR on oxygen content and inclusions in GCr15 bearing steel
-
摘要: 电渣重熔对于提高钢的纯净度有明显的效果,但对于低氧含量钢种存在增氧现象。通过采用GCr15轴承钢作为自耗电极,研究在大气环境下和Ar保护下使用不同渣系对轴承钢中氧含量及夹杂物的变化规律。研究发现,采用CaF2-Al2O3-CaO三元渣系在氩气保护下电渣重熔GCr15轴承钢时,电渣锭中的氧含量随渣系中的Al2O3含量下降而降低,而使用不含Al2O3渣系重熔的电渣锭中氧含量最低;氩气保护下重熔的电渣锭中的夹杂物直径均比使用同种渣系在空气中重熔的电渣锭要小。氧含量增加主要是因为电渣重熔过程渣池温度过高,导致渣中Al2O3稳定性变差所致。Abstract: Electroslag remelting has a positive effect on improving the purity of steel, but it will increase oxygen for low oxygen content steel. In this paper, GCr15 bearing steel was used as consumable electrode to study the variation of oxygen content and inclusions in bearing steel with different slag systems under atmospheric environment and Ar protection. It is found out that the oxygen content in ESR ingot decreases with the decrease of the alumina content in the slag system when the CaF2-Al2O3-CaO ternary slag system is used for ESR of GCr15 bearing steel under the protection of argon, while the oxygen content in ESR ingot remelted with the slag system without Al2O3 is the lowest. The diameter of inclusions in ESR ingot remelted under the protection of argon is smaller than that of steel remelted with the same slag system in air. The increase of oxygen content is mainly due to the high temperature of slag pool during ESR, which leads to the poor stability of Al2O3 in slag.
-
Key words:
- electroslag remelting /
- GCr15 bearing steel /
- oxygen /
- inclusion
-
表 1 GCr15轴承钢主要化学成分
Table 1. Main chemical compositions of GCr15 bearing steel
% C Si Mn Cr Al P S O N 0.99 0.21 0.35 1.47 0.02 0.009 0.001 0.00075 0.0039 表 2 试验用渣系化学成分及试验方案
Table 2. Chemical compositions and experimental scheme of experimental slag system
研究方案 渣系 成分 气氛 1 S1 70%CaF2+30%Al2O3 大气 2 S2 65% CaF2+25% Al2O3+10%CaO 大气 3 S3 60% CaF2+20%Al2O3+20%CaO 大气 4 S4 60% CaF2+15%Al2O3+25%CaO 大气 5 S5 70% CaF2+30%CaO 大气 6 S1 70%CaF2+30%Al2O3 Ar 7 S3 60%CaF2+20%Al2O3+20%CaO Ar 8 S5 70%CaF2+30%CaO Ar -
[1] Bhadeshia H K D H. Steels for bearings[J]. Progress in Materials Science, 2012,57(2):268−435. doi: 10.1016/j.pmatsci.2011.06.002 [2] Zhou Deguang, Xu Weiguo, Wang Ping, et al. Control and effect of oxygen in ESR process of bearing steel[J]. Iron and steel, 1998,33(3):13−17. (周德光, 徐卫国, 王平, 等. 轴承钢电渣重熔过程中氧的控制及作用研究[J]. 钢铁, 1998,33(3):13−17. [3] (王昊. H13钢中夹杂物控制及电渣重熔中的转变行为研究[D]. 北京: 北京科技大学, 2019.)Wang Hao. Control of inclusions in H13 steel and study on transformation behavior in ESR[D]. Beijing: Beijing University of Science and Technology, 2019. [4] (李世健. 电渣重熔G20CrNi2Mo轴承钢过程洁净度控制机理及工艺[D]. 北京: 北京科技大学, 2020.)Li Shijian. Cleanliness control mechanism and process of ESR G20CrNi2Mo bearing steel[D]. Beijing: Beijing University of Science and Technology, 2020. [5] Shi Chengbin, Wang Hui,Li Jing. Effects of reoxidation of liquid steel and slag composition on the chemistry evolution of inclusions during electroslag remelting[J]. Metallurgical & Materials Transactions B , 2018,49(4):1675-1689. [6] Zhan Dongping, Zhang Yangpeng, Liu R J, et al. Effect of protected electroslag remelting on cleanliness of G20CrNi2Mo bearing steel[J]. Ironmaking & Steelmaking, 2016,44(5):1−9. [7] Wang Changsheng, Liu Shengguo, Xu Mingde, et al. Reducing oxygen content of GCr15 steel by ESR[J]. Special Steel, 1997,(3):31−35. (王昌生, 刘胜国, 徐明德, 等. 降低电渣重熔GCr15钢的氧含量[J]. 特殊钢, 1997,(3):31−35. [8] Wang Qiang, Li Guangqiang, Gao Yunming, et al. A coupled mathematical model and experimental validation of oxygen transport behavior in the electro-slag refining process[J]. Journal of Applied Electrochemistry, 2017,47(4):1−12. [9] Li Shijian, Cheng Guoguang. Kinetic analysis of aluminum and oxygen variation of G20CrNi2Mo bearing steel during industrial electroslag remelting process[J]. ISIJ International, 2017,57(12):2148−2156. doi: 10.2355/isijinternational.ISIJINT-2017-227 [10] Li Shijian, Cheng Guoguang, Miao Zhiqi, et al. Evolution of oxide inclusions in G20CrNi2Mo carburized bearing steel during industrial electroslag remelting[J]. ISIJ International, 2018,58(10):72. [11] Yan Qingzhong, Chen Lie, Li Fawen, et al. Optimization of remelting process of blade steel 1Cr12Ni2Mo2VN 1.1t ESR ingot[J]. Special Steel, 2015,36(2):44−47. (严清忠, 陈列, 李发文, 等. 叶片钢1Cr12Ni2Mo2VN 1.1t电渣锭重熔工艺的优化[J]. 特殊钢, 2015,36(2):44−47. doi: 10.3969/j.issn.1003-8620.2015.02.012 [12] Chang Lizhong, Yang Haisen, Li Zhengbang. Study on oxygen behavior in electroslag remelting process[J]. Steelmaking, 2010,26(5):46−50. (常立忠, 杨海森, 李正邦. 电渣重熔过程中的氧行为研究[J]. 炼钢, 2010,26(5):46−50. [13] Chang Lizhong, Shi Xiaofang, Cong Junqiang. Study on mechanism of oxygen increase and countermeasure to control oxygen content during electroslag remelting process[J]. Ironmaking & Steelmaking, 2014,41(3):182−186. [14] (李正邦. 电渣冶金的原理与实践[M]. 北京: 冶金工业出版社, 2010: 8.)Li Zhengbang. Principle and practice of electroslag metallurgy[M]. Beijing: Metallurgical Industry Press, 2010: 8.