Microstructure and mechanical properties of titanium magnesium alloy for automobile frame
-
摘要: 研究了不同钛含量的汽车车架用含钛镁合金Mg-8Al-1Zn-xTi(x=0.05, 0.15, 0.3)的显微组织和力学性能,并对比了不含钛Mg-8Al-1Zn合金的显微组织和力学性能。结果表明:钛的添加,细化了合金晶粒,改善了合金力学性能。随钛含量增加,合金平均晶粒尺寸先减小后增大、力学性能先提高后下降。与不含钛Mg-8Al-1Zn合金相比,含钛Mg-8Al-1Zn-0.15Ti合金的平均晶粒尺寸减小7.2 μm、抗拉强度增大32 MPa、屈服强度增大33 MPa、断后伸长率增大3.8%,拉伸断裂方式从混合断裂变为塑性断裂。Abstract: The microstructure and mechanical properties of Mg-8Al-1Zn-xTi(x=0.05,0.15,0.3) magnesium alloy containing titanium with different titanium contents were tested and analyzed, and the microstructure and mechanical properties of Mg-8Al-1Zn alloy without titanium were compared. The results show that the addition of alloy element Ti can refine the alloy grain and improve the mechanical properties of the alloy. The average grain size of the alloy first decreases and then increase, and the mechanical properties first improves and then declines. Compared with Mg-8Al-1Zn alloy without Ti, the average grain size of Mg-8Al-1Zn-0.15Ti alloy containing Ti decreases by 7.2 μm, tensile strength increases by 32 MPa, yield strength increases by 33 MPa, the elongation after fracture increases by 3.8%, and the tensile fracture mode changes from mixed fracture to plastic fracture.
-
Key words:
- magnesium alloy /
- automobile frame /
- Ti /
- alloying /
- microstructure /
- mechanical property
-
表 1 试验合金化学成分
Table 1. Chemical compositions of the testing alloys
% 编号 Al Zn Ti Si Fe Mg 试样1# 8.021 0.995 0 0.010 0.004 Bal. 试样2# 8.022 0.994 0.051 0.011 0.004 Bal. 试样3# 8.024 0.996 0.148 0.011 0.005 Bal. 试样4# 8.025 0.997 0.301 0.012 0.005 Bal. 表 2 试验合金的平均晶粒尺寸
Table 2. Average grain size of the samples
编号 钛含量/% 平均晶粒尺寸/μm 试样1# 0 16.4 试样2# 0.05 14.6 试样3# 0.15 9.2 试样4# 0.3 11.4 表 3 试验合金力学性能测试结果
Table 3. Test results of the mechanical properties of used alloys
编号 钛含量/% 抗拉强度/MPa 屈服强度/MPa 断后伸长率/% 试样1# 0 366 257 7.4 试样2# 0.05 371 261 7.7 试样3# 0.15 398 290 11.2 试样4# 0.3 382 273 11.8 -
[1] Ji Hongchao, Li Yiming, Long Haiyang, et al. Application and development of magnesium alloy in automobile parts[J]. Foundry Technology, 2019,40(1):122−128. (纪宏超, 李轶明, 龙海洋, 等. 镁合金在汽车零部件中的应用与发展[J]. 铸造技术, 2019,40(1):122−128. [2] Li Haibin, Qi Yanhui. Casting process and properties of new rare earth alloys for automotive batteries[J]. Special Casting & Nonferrous Alloys, 2019,39(5):487−489. (李海斌, 郄彦辉. 新型稀土镁合金汽车电池的铸造工艺及性能研究[J]. 特种铸造及有色合金, 2019,39(5):487−489. [3] Hao Liang, Sun Lili, Meng Xiangli. Experimental study on as-cast properties of high-strength magnesium alloys used for automobile[J]. Light Alloy Fabrication Technology, 2019,47(9):66−69. (郝亮, 孙丽丽, 盂祥丽. 汽车用高强镁合金铸态性能试验研究[J]. 轻合金加工技术, 2019,47(9):66−69. [4] Sun Hongtu, Shen Guozhe, Hu Ping, et al. Design on the magnesium alloy car body[J]. Machinery Design & Manufacture, 2009,(7):4−6. (孙宏图, 申国哲, 胡平, 等. 汽车镁合金车身设计[J]. 机械设计与制造, 2009,(7):4−6. doi: 10.3969/j.issn.1001-3997.2009.07.002 [5] Chen Kai, Yan Yinbiao, Xu Yue. Proces analysis and numerical simulation of hot extrusion of magnesium alloy wheels[J]. Machine Building & Automation, 2018,47(3):103−105. (陈锴, 颜银标, 徐跃. 镁合金汽车轮毂挤压成形工艺分析及其数值模拟[J]. 机械制造与自动化, 2018,47(3):103−105. [6] Zhang Cui. Experimental research on surface modification of wrought magnesium alloy for new energy automobile[J]. Electroplating & Pollution Control, 2018,38(6):23−25. (张淬. 新能源汽车用变形镁合金表面改性实验研究[J]. 电镀与环保, 2018,38(6):23−25. doi: 10.3969/j.issn.1000-4742.2018.06.008 [7] Xiang Junbo, Wang Congming, Chen Kaibing, et al. Surface modification and corrosion resistance of MB15 magnesium alloy for automobile[J]. Heat Treatment of Metals, 2019,44(12):186−192. (向峻伯, 王从明, 陈凯镔, 等. 汽车用MB15镁合金的表面改性与耐腐蚀性能[J]. 金属热处理, 2019,44(12):186−192. [8] Wang Yaoyao, Chen Zhijuan, Liu Gang. Effect of extrusion temperature on microstructure and mechanical properties of AZ91 magnesium alloy for automobile[J]. Hot Working Technology, 2020,49(1):80−82. (王耀耀, 陈智娟, 刘刚. 挤压温度对汽车用AZ91镁合金组织与力学性能的影响[J]. 热加工工艺, 2020,49(1):80−82. [9] Lin Shaoyi. Characteristics of crack tip of fatigue crack in the semi-solid rheomolding AZ91D auto parts[J]. Special Casting & Nonferrous Alloys, 2019,39(11):1209−1212. (林绍义. 半固态流变成形AZ91D镁合金汽车零件裂纹尖端特征[J]. 特种铸造及有色合金, 2019,39(11):1209−1212. [10] Song Fei, Wu Huibo, Luo Zhilin. Study on extrusion deformation and properties for magnesium alloy automotive hubs[J]. Forging & Stamping Technology, 2019,44(12):174−181, 197. (宋飞, 吴会波, 罗志林. 镁合金汽车轮毂的挤压变形与性能研究[J]. 锻压技术, 2019,44(12):174−181, 197. [11] Hao Mengjun, Gong Tao, Dai Yanxia. Modified magnesium alloy forging process for automobile hub[J]. Forging & Stamping Technology, 2019,44(4):22−27. (郝孟军, 宫涛, 代艳霞. 汽车轮毂用改性镁合金锻造工艺[J]. 锻压技术, 2019,44(4):22−27. [12] Wei Yun, Zhao Xing. Optimization of extrusion process for new energy automotive profiles made from titanium-magnesium alloy[J]. Iron Steel Vanadium Titanium, 2019,40(6):155−159. (魏云, 赵行. 含钛镁合金新能源汽车型材挤压工艺优化[J]. 钢铁钒钛, 2019,40(6):155−159. [13] Zhuang Yanxia, Li Ning. Microstructure and properties of new automobile magnesium alloy modified by vanadium and titanium[J]. Iron Steel Vanadium Titanium, 2019,40(5):61−65. (庄彦霞, 李宁. 钒钛改性汽车用新型镁合金的组织与性能[J]. 钢铁钒钛, 2019,40(5):61−65.