留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高性能钛合金先进成形技术研究现状

李军兆 孙清洁 于航

李军兆, 孙清洁, 于航. 高性能钛合金先进成形技术研究现状[J]. 钢铁钒钛, 2021, 42(6): 17-27. doi: 10.7513/j.issn.1004-7638.2021.06.002
引用本文: 李军兆, 孙清洁, 于航. 高性能钛合金先进成形技术研究现状[J]. 钢铁钒钛, 2021, 42(6): 17-27. doi: 10.7513/j.issn.1004-7638.2021.06.002
Li Junzhao, Sun Qingjie, Yu Hang. Current research status of advanced forming technology for high-performance titanium alloys[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(6): 17-27. doi: 10.7513/j.issn.1004-7638.2021.06.002
Citation: Li Junzhao, Sun Qingjie, Yu Hang. Current research status of advanced forming technology for high-performance titanium alloys[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(6): 17-27. doi: 10.7513/j.issn.1004-7638.2021.06.002

高性能钛合金先进成形技术研究现状

doi: 10.7513/j.issn.1004-7638.2021.06.002
基金项目: 湖南省科技创新计划项目(S2021 GXKJCX0287)。
详细信息
    作者简介:

    李军兆(1993—),男,山东青岛人,博士研究生,高级工程师,主要从事钛及钛合金焊接技术研究,E-mail:031@goldskycn.com

  • 中图分类号: TF823,TG306

Current research status of advanced forming technology for high-performance titanium alloys

  • 摘要: 主要介绍先进热成形技术、脉冲电流辅助成形技术和电磁辅助成形技术的特点,及其在钛合金薄壁板材成形中应用的研究进展。热成形是钛合金塑性加工应用最为普遍的成形工艺,利用高温下钛合金塑性变形软化的特征,能够实现复杂钛合金零件的成形。脉冲电流和电磁辅助成形技术目前尚未开展大规模的产业应用,其在高强度难成形材料的成形加工方面具有潜在应用前景。
  • 图  1  TC4钛合金屈服强度(a)、抗拉强度(b)和延伸率(c)随温度的变化曲线[11]

    Figure  1.  The yield strength (a), tensile strength (b) and elongation (c) of TC4 titanium alloy with forming temperature

    图  2  不同温度和应变率下钛合金加工极限图谱[13]

    Figure  2.  Processing map of titanium alloy at different temperatures and strain rates

    图  3  不同变形温度下TC4的显微组织结构[15]

    Figure  3.  The microstructure of TC4 alloy obtained under various forming temperatures

    图  4  钛合金热成形结构件[21-23]

    Figure  4.  The hot forming structural parts of titanium alloy

    图  5  电辅助轧制和渐进成形示意[23, 37]

    Figure  5.  Schematic diagram of electric assisted rolling and incremental forming process

    图  6  高能脉冲电流频率对TC4钛合金抗拉强度和延伸率的影响[40]

    Figure  6.  The effect of electropulsing frequency on tensile strength and elongation of TC4 alloy

    图  7  脉冲电流对TC4钛合金裂纹扩展行为的影响[39, 43]

    Figure  7.  The effect of electropulsing on crack propagation behavior of TC4 alloy

    图  8  常规冷拔和电流辅助冷拔TC4微观组织[44]

    Figure  8.  Microstructure of TC4 obtained from cold drawing and electric assisted drawing

    图  9  冷变形和脉冲电流辅助作用下的位错行为[44, 45]

    Figure  9.  The dislocation behavior of TC4 obtained from cold drawing and electropulsing processing

    图  10  高能脉冲频率下的拉拔组织形态和平均晶粒尺寸[40]

    Figure  10.  The microstructure and average grain size of TC4 alloy obtained from cold drawing process with electropulsing processing

    图  11  电辅助电致塑性和非电致塑性效应定量研究[49]

    Figure  11.  Quantitative study of electroplastic and non-electroplastic effect

    图  12  脉冲电流辅助条件下的应力应变曲线和热软化系数[50]

    Figure  12.  Stress-strain curve and thermal softening coefficient of TC4 alloying from electropulsing processing

  • [1] Zhao Yongqing. Current situation and development trend of titanium alloys[J]. Materials China, 2010,29(5):1−8. (赵永庆. 国内外钛合金研究的发展现状及趋势[J]. 中国材料进展, 2010,29(5):1−8.
    [2] Jin Hexi, Wei Kexiang, Li Jianming, et al. Research development of titanium alloy in aerospace industry[J]. The Chinese Journal of Nonferrous Metals, 2015,25(2):280−292. (金和喜, 魏克湘, 李建明, 等. 航空用钛合金研究进展[J]. 中国有色金属学报, 2015,25(2):280−292.
    [3] Li Liang, Sun Jianke, Meng Xiangjun. Application state and prospects for titanium alloys[J]. Titanium Industry Process, 2004,21(5):19−24. (李梁, 孙健科, 孟祥军. 钛合金的应用现状及发展前景[J]. 钛工业进展, 2004,21(5):19−24. doi: 10.3969/j.issn.1009-9964.2004.05.005
    [4] Liu Xin, Yang Jingchao, Li Heng, et al. A critical review on tube joining by plastic deformation[J]. Acta Aeronautica et Astronautica Sinica, 2021,42:1−23. (刘欣, 杨景超, 李恒, 等. 管路构件塑性变形连接技术研究进展及挑战[J]. 航空学报, 2021,42:1−23.
    [5] 张翥, 王群骄, 莫畏. 钛的金属学和热处理[M]. 北京: 冶金工业出版社, 2009.

    Zhang Zhu, Wang Qunjiao, Mo Wei. Metalology and heat treatment of titanium[M]. Beijing: Metallurgical Industry Press, 2009.
    [6] Sprecher A F, Mannan S L, Conrad H. On the temperature rise associated with the electroplastic effect in titanium[J]. Scripta Metallurgica, 1983,17(6):769−772. doi: 10.1016/0036-9748(83)90491-X
    [7] 《稀有金属材料加工手册》编写组. 稀有金属材料加工手册[M]. 北京: 冶金工业出版社, 1984.

    Compilation Group. Manual for processing rare metal materials[M]. Beijing: Metallurgical Industry Press, 1984.
    [8] 张翥, 谢水生, 赵云豪. 钛材塑性加工技术[M]. 北京: 冶金工业出版社, 2010.

    Zhang Zhu, Xie Shuisheng, Zhao Yunhao. Plastic processing technology of titanium[M]. Beijing: Metallurgical Industry Press, 2010.
    [9] Mori K, Maki S, Tanaka Y. Warm and hot stamping of ultra high tensile strength steel sheets using resistance heating[J]. CIRP Annals, 2005,54(1):209−212. doi: 10.1016/S0007-8506(07)60085-7
    [10] 李克俭. TC4钛合金板材热拉弯成形热力耦合数值模拟研究[D]. 秦皇岛: 燕山大学, 2015.

    Li Kejian. Coupled thermo-mechanicalfinite element analysis of hot stretch bending of TC4 titanium alloy sheet[D]. Qinhuangdao: Yanshan Univerty, 2015.
    [11] 肖宁斌. BTi-6431 S钛合金板材热成形性能评价研究[D]. 江苏: 南京航空航天大学, 2012.

    Xiao Ningbin. Research on hot formability of BTi-6431 S titanium alloy sheet[D]. Jiangsu: Nanjing University of Aeronautics and Astronautics, 2012.
    [12] Ozturk F, Remzi, Ece R E, et al. Mechanical and microstructural evaluations of hot formed titanium sheets by electrical resistance heating process[J]. Materials Science & Engineering:A, 2013,578:207−214.
    [13] Aksenov S A, Chumachenko E N, Logashina I V. Tensile testing of Ti-6Al-4V alloy superplasticity[J]. Materials Science Forum, 2013,762:392−397. doi: 10.4028/www.scientific.net/MSF.762.392
    [14] Wang H, Zhao K X, Chu X R, et al. Constitutive modelling and microscopic analysis of TC4 alloy sheet at elevated temperature[J]. Results in Physics, 2019,13:1−11.
    [15] Wei S, Deng P R, Qiu J T, et al. Tensile deformation behavior of Ti-6Al-4V sheet at elevated temperature[J]. Materials Research Express, 2019,6(11):1−7.
    [16] Zhao J, Lv L X, Liu G, et al. Analysis of deformation inhomogeneity and slip mode of TA15 titanium alloy sheets during the hot tensile process based on crystal plasticity model[J]. Materials Science and Engineering: A, 2017.
    [17] Xiao J, Li D S, Li X Q, et al. Constitutive modeling and microstructure change of Ti-6Al-4V during the hot tensile deformation[J]. Journal of Alloys & Compounds, 2012,541:346−352.
    [18] Zhang Tao, Li Qi, He Lu, et al. Research on hot forming of abnormity part of titanium alloy TC2[J]. Aeronautical Manufacturing Technology, 2011,16:57−59. (张涛, 李琦, 何露, 等. TC2钛合金异型件热成形工艺研究[J]. 航空制造技术, 2011,16:57−59. doi: 10.3969/j.issn.1671-833X.2011.08.009
    [19] 陈灿. TA32高温钛合金复杂飞机蒙皮零件热成形工艺研究[D]. 南京: 南京航空航天大学, 2018.

    Chen Can. Research on thermoforming process of complex aircraft skin parts for TA32 titanium alloy[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018.
    [20] Tm A, Mt B, Kim B, et al. Hot stamping of titanium alloy sheets using partial contact heating[J]. Procedia Manufacturing, 2018,15:1149−1155. doi: 10.1016/j.promfg.2018.07.375
    [21] Wang Anyang, Lu Zhen, Jiang Shaosong, et al. Control of wall thickness uniformity in variable temperature hot drawing of titanium alloy conical components[J]. Aerospace Manufacturing Technology, 2012,1:36−39. (王安阳, 卢振, 蒋少松, 等. 钛合金锥形构件变温热拉深成形壁厚均匀性控制[J]. 航天制造技术, 2012,1:36−39.
    [22] Fan G Q, Gao L. Numerical simulation and experimental investigation to improve the dimensional accuracy in electric hot incremental forming of Ti-6Al-4V titanium sheet[J]. The International Journal of Advanced Manufacturing Technology, 2014,72:1133−1141. doi: 10.1007/s00170-014-5769-8
    [23] Vahdani M, Mirnia M J, Bakhshi-Jooybari M, et al. Electric hot incremental sheet forming of Ti-6Al-4V titanium, AA6061 aluminum, and DC01 steel sheets[J]. The International Journal of Advanced Manufacturing Technology, 2019,103:1−11. doi: 10.1007/s00170-019-03381-2
    [24] Dong Wenbin, Zhang Yajing, Gou Ruibin, et al. Effect of external load on edge effect of laser bending[J]. Journal of Plasticity Engineering, 2020,27(11):47−51. (董文彬, 张雅晶, 缑瑞宾, 等. 外载荷对激光弯曲成形边界效应的影响[J]. 塑性工程学报, 2020,27(11):47−51.
    [25] Gisario A, Barletta M, Venettacci S. Improvements in springback control by external force laser-assisted sheet bending of titanium and aluminum alloys[J]. Optics & Laser Technology, 2016,86:46−53.
    [26] Gisario A, Mehrpouya M, Venettacci S, et al. Laser-assisted bending of titanium grade-2 sheets: Experimental analysis and numerical simulation[J]. Optics & Lasers in Engineering, 2017,92:110−119.
    [27] Hu Y, Luo M, Yao Z. Increasing the capability of laser peen forming to bend titanium alloy sheets with laser-assisted local heating[J]. Materials and Design, 2016,90:364−372. doi: 10.1016/j.matdes.2015.10.128
    [28] Shidid D P, Gollo M H, Brandt M, et al. Study of effect of process parameters on titanium sheet metal bending using Nd: YAG laser[J]. Optics & Laser Technology, 2013,47:242−247.
    [29] Wang Yuting. Study on tensile bending forming process of titanium alloy by resistance heating[J]. Aerospace Materials & Technology, 1986,2:4−7. (王玉庭. 钛合金电阻加热拉弯成形工艺研究[J]. 宇航材料工艺, 1986,2:4−7.
    [30] Jiang Shuangshuang, Tang Zejun, Du Hao, et al. Research progress of the forming process of titanium alloy assisted by current[J]. Journal of Netshape Forming Engineering, 2017,2:7−13. (江双双, 汤泽军, 杜浩, 等. 钛合金电流辅助成形工艺研究进展[J]. 精密成形工程, 2017,2:7−13. doi: 10.3969/j.issn.1674-6457.2017.02.002
    [31] Shen Yifu, Guo Xiaonan, Zhang Kun, et al. Effect of electric current pulse on metal materials[J]. Materials Science & Engineering, 1998,16(3):4−7. (沈以赴, 郭晓楠, 张坤, 等. 脉冲电流对金属材料的作用及其研究进展[J]. 材料科学与工程学报, 1998,16(3):4−7.
    [32] Okazaki K, Kagawa M, Conrad H. An evaluation of the contributions of skin, pinch and heating effects to the electroplastic effect in titatnium[J]. Materials Science & Engineering, 1980,45(2):109−116.
    [33] Rudolf C. Goswami R, Kang W, et al. Effects of electric current on the plastic deformation behavior of pure copper, iron, and titanium[J]. Acta Materialia, 2021,209:1−13.
    [34] Ding Junhao, Li Heng, Bian Tianjun, et al. Electroplasticity and electrically-assisted forming: A critical review[J]. Acta Aeronautica et Astronautica Sinica, 2018,39(1):15−32. (丁俊豪, 李恒, 边天军, 等. 电塑性及电流辅助成形研究动态及展望[J]. 航空学报, 2018,39(1):15−32.
    [35] Peng Shuhua, Yang Junjie, Li Yao. Analysis on mechanism of electro-plastic effect and its prospect[J]. Journal of Jianghan University (Nature Science Edition), 2013,2:63−67. (彭书华, 杨俊杰, 李尧. 电致塑性效应机制研究及其展望[J]. 江汉大学学报(自然科学版), 2013,2:63−67.
    [36] Fan G Q, Sun F T, Meng X G, et al. Electric hot incremental forming of Ti-6Al-4V titanium sheet[J]. The International Journal of Advanced Manufacturing Technology, 2010,49:941−947. doi: 10.1007/s00170-009-2472-2
    [37] Ye X X, Tse ZTH, Tang G Y, et al. Effect of electroplastic rolling on deformability, mechanical property and microstructure evolution of Ti-6Al-4V alloy strip[J]. Materials Characterization, 2014,98:147−161. doi: 10.1016/j.matchar.2014.10.026
    [38] Zhou Qiang, Li Xifeng, Chen Jun, et al. Experimental study on electroplastic V-bending properties of TC4 titanium alloys[J]. Journal of Plasticity Engineering, 2015,22(5):52−56. (周强, 李细锋, 陈军, 等. TC4钛合金电致塑性V型弯曲性能的实验研究[J]. 塑性工程学报, 2015,22(5):52−56.
    [39] 朱岩. 脉冲电流辅助钛及钛合金弯曲成形规律研究[D]. 太原: 太原理工大学, 2020.

    Zhu Yan. Research on pulse current-assisted bending forming law of titanium and titanium alloy[D]. Taiyuan: Taiyuan University of Technology, 2020.
    [40] Ye X X, Tse ZTZ, Tang G Y, et al. Influence of electropulsing globularization on the microstructure and mechanical properties of Ti-6Al-4V alloy strip with lamellar microstructure[J]. Materials Science & Engineering:A, 2015,622:1−6.
    [41] Li Ping, Xie Xiuming, Wang Huigan, et al. Electric-thermal-mechanical coupled simulation and springback prediction of Ti55 alloy electrical assisted V-bending[J]. The Chinese Journal of Nonferrous Metals, 2021,31(4):847−857. (李萍, 解修明, 汪会干, 等. Ti55合金电辅助V弯电热力耦合仿真及回弹预测[J]. 中国有色金属学报, 2021,31(4):847−857. doi: 10.11817/j.ysxb.1004.0609.2021-35962
    [42] Shen Yifu, Guo Xiaonan, Yao Ge, et al. Exploration of a new approach to improve fatigue property of materials II—Crack growth resistance of Ti-6Al-4V alloys induced bu electric current pluse[J]. Chinese Journal of Materials Research, 1999,4:381−384. (沈以赴, 郭晓楠, 姚戈, 等. 材料疲劳恢复新途径的探索II—脉冲电流对Ti-6Al-4V合金裂纹扩展的阻滞[J]. 材料研究学报, 1999,4:381−384.
    [43] Song H, Wang Z J. Microcrack healing and local recrystallization in pre-deformed sheet by high density electropulsing[J]. Materials Science & Engineering:A, 2008,490:1−6.
    [44] Zhou Y, Chen G Q, Fu X S, et al. Effect of electropulsing on deformation behavior of Ti-6Al-4V alloy during cold drawing[J]. Transactions of Nonferrous Metals Society China, 2014,24:1012−1021. doi: 10.1016/S1003-6326(14)63156-3
    [45] 宋辉. 脉冲电流处理对钛合金板材组织和性能影响的研究[D]. 哈尔滨: 哈尔滨工业大学, 2009.

    Song Hui. Study on the effects of electropulsing on microstructures and properties of titanium alloys sheet[D]. Harbin: Harbin Institute of Technology, 2009. )
    [46] 江双双. 电脉冲辅助TC4钛合金板滚弯成形研究[D]. 南京: 南京航空航天大学, 2018.

    Jiang Shuangshuang. Investigation into the electrically-assisted roll bending process of a TC4 titanium alloy sheet[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018.
    [47] Fan G Q, Gao L. Mechanical property of Ti-6Al-4V sheet in one-sided electric hot incremental forming[J]. The International Journal of Advanced Manufacturing Technology, 2014,72:989−994. doi: 10.1007/s00170-014-5733-7
    [48] Ye X X, Tse ZTH, Tang G Y. Mechanical properties and tensile fracture of Ti-Al-V alloy strip under electropulsing-induced phase change[J]. Journal of Materials Research, 2015,30(2):206−223. doi: 10.1557/jmr.2014.367
    [49] Ross C D, Kronenberger T J, Roth J T. Effect of DC current on the formability of 6Al4V titanium[C]//ASME 2006 International Manufacturing Science and Engineering Conference, 2006.
    [50] Magargee J, Morestin F, Cao J. Characterization of flow stress for commercially pure titanium subjected to electrically assisted deformation[C]//Asme International Manufacturing Science & Engineering Conference Collocated with the North American Manufacturing Research Conference, 2013.
    [51] Cao Fengchao, Zeng Yuansong, Liu Baosheng, et al. Study on electrically assisted stretch bending of L-section profile of titanium alloy[J]. Mechanical Science and Technology for Aerospace Engineering, 2019,38(9):1437−1442. (曹凤超, 曾元松, 刘宝胜, 等. 电流辅助钛合金L型材拉弯工艺研究[J]. 机械科学与技术, 2019,38(9):1437−1442.
    [52] Chen Pengyu, Cheng Lidong, Wang Chunju, et al. Electrically-assisted rolling process of curved thin foil micro-features[J]. Journal of Plasticity Engineering, 2019,26(2):79−84. (陈鹏宇, 程利冬, 王春举, 等. 薄板曲面微结构电流辅助滚压成形工艺研究[J]. 塑性工程学报, 2019,26(2):79−84. doi: 10.3969/j.issn.1007-2012.2019.02.010
    [53] Psyk V, Risch D, Kinsey B L, et al. Electromagnetic forming—A review[J]. Journal of Materials Processing Technology, 2011,211(5):787−829. doi: 10.1016/j.jmatprotec.2010.12.012
    [54] Nie Peng, Feng Zhichao, Wang Zhefeng. A study on electromagnetic sizing of large titanium alloy cylindrical parts with punching die[J]. Modern Manufacturing Engineering, 2019,467(8):46,88−92. (聂鹏, 冯志超, 王哲峰. 大型钛合金筒形件电磁冲模校圆研究[J]. 现代制造工程, 2019,467(8):46,88−92.
    [55] Cui Xiaohui, Zhou Xianglong, Du Zhihao, et al. New development of electromagnetic pulse forming technology and its application in aircraft skin parts manufacturing[J]. Aeronautical Manufacturing Technology, 2020,63(3):22−32. (崔晓辉, 周向龙, 杜志浩, 等. 电磁脉冲成形技术新进展及其在飞机蒙皮件制造中的应用[J]. 航空制造技术, 2020,63(3):22−32.
    [56] Li F Q, Zhao J, Mo J H, et al. Comparative study of the microstructure of Ti-6Al-4V titanium alloy sheets under quasi-static and high-velocity bulging[J]. Journal of Mechanical Science and Technology, 2017,31(3):1349−1356. doi: 10.1007/s12206-016-0843-9
    [57] Lin Zundong, Lv Feng, Han Yujie, et al. Experimental study on formability and electromagnetic-assisted bending for TA32 titanium alloy sheets[J]. Forging & Stamping Technology, 2021,46(1):104−109. (林遵东, 吕枫, 韩玉杰, 等. TA32钛合金板成形性能与电磁辅助弯曲成形实验研究[J]. 锻压技术, 2021,46(1):104−109.
    [58] Li F Q, Mo J H, Li J J, et al. Formability of Ti-6Al-4V titanium alloy sheet in magnetic pulse bulging[J]. Materials and Design, 2013,52:337−344. doi: 10.1016/j.matdes.2013.05.064
    [59] Li Fenqiang, Chen Xinyu, Jiang Jishuai. Application of electromagnetic forming technology in the forming of titanium alloy sheets[J]. Journal of Netshape Forming Engineering, 2021,13(5):43−50. (李奋强, 陈新宇, 蒋继帅. 电磁成形技术在钛合金板材成形中的应用[J]. 精密成形工程, 2021,13(5):43−50. doi: 10.3969/j.issn.1674-6457.2021.05.005
    [60] Xiong Qi, Tang Hongtao, Wang Muxue, et al. Research progress of electromagnetic forming technique since 2011[J]. High Voltage Engineering, 2019,45(4):1171−1181. (熊奇, 唐红涛, 王沐雪, 等. 2011年以来电磁成形研究进展[J]. 高电压技术, 2019,45(4):1171−1181.
  • 加载中
图(12)
计量
  • 文章访问数:  1365
  • HTML全文浏览量:  202
  • PDF下载量:  194
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-15
  • 刊出日期:  2021-12-31

目录

    /

    返回文章
    返回