留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氢化钛粉末冶金制备的近α型Ti-1100合金的高温压缩性能

朴荣勋 朱文进 吕顺顺

朴荣勋, 朱文进, 吕顺顺. 氢化钛粉末冶金制备的近α型Ti-1100合金的高温压缩性能[J]. 钢铁钒钛, 2021, 42(6): 72-77. doi: 10.7513/j.issn.1004-7638.2021.06.009
引用本文: 朴荣勋, 朱文进, 吕顺顺. 氢化钛粉末冶金制备的近α型Ti-1100合金的高温压缩性能[J]. 钢铁钒钛, 2021, 42(6): 72-77. doi: 10.7513/j.issn.1004-7638.2021.06.009
Piao Rongxun, Zhu Wenjin, Lv Shunshun. High temperature compression properties of near α type Ti-1100 alloy prepared by titanium hydride based powder metallurgy[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(6): 72-77. doi: 10.7513/j.issn.1004-7638.2021.06.009
Citation: Piao Rongxun, Zhu Wenjin, Lv Shunshun. High temperature compression properties of near α type Ti-1100 alloy prepared by titanium hydride based powder metallurgy[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(6): 72-77. doi: 10.7513/j.issn.1004-7638.2021.06.009

氢化钛粉末冶金制备的近α型Ti-1100合金的高温压缩性能

doi: 10.7513/j.issn.1004-7638.2021.06.009
基金项目: 国家自然科学基金项目(No.51804007);安徽理工大学引进人才科研启动基金项 (No.13200456)。
详细信息
    作者简介:

    朴荣勋(1983—),男,吉林延吉人,工学博士,硕士生导师,通讯作者,主要从事钒钛资源综合利用及钒钛新材料新技术研究,E-mail:940310433@ qq.com

  • 中图分类号: TF124,TG146.2

High temperature compression properties of near α type Ti-1100 alloy prepared by titanium hydride based powder metallurgy

  • 摘要: 以氢化钛粉为原料,采用粉末冶金法-热等静压法制备高温钛合金Ti-1100,并进行了等温压缩试验,通过压缩样品应力应变曲线进行压缩变形行为分析,再结合Arrhenius双曲正弦本构模型建立热压缩本构方程。通过应力应变曲线分析,发现应变速率在0.01 s−1时,所有样品在加工硬化后均表现出稳态流变行为;而应变速率为1 s−1、温度在900 ℃或1 000 ℃时,流变应力随着变形达到稳态流变状态后,呈增加趋势。应变速率为0.01、0.1、1 s−1时的热压缩变形激活能分别为96、165、232 kJ/mol。硬度测试结果表明显微硬度随温度和应变速率增加稍有降低趋势,当温度为950 ℃,应变速率为0.1 s−1时,合金的硬度普遍较小, 热加工性能最佳。
  • 图  1  Ti-1100合金的二次电子微观形貌

    Figure  1.  Secondary electron micromorphology of Ti-1100 alloy

    图  2  高温压缩样品宏观形貌

    Figure  2.  Macroscopic morphology of the samples after high temperature compression

    图  3  Ti-1100合金在900、950、1000 ℃压缩变形的应力-应变曲线

    Figure  3.  Flow stress-strain curves of Ti-1100 alloy under compression at 900, 950 and 1 000 ℃

    图  4  各类本构方程关系

    Figure  4.  Relationships of constitutive equations

    图  5  硬度随应变速率、温度的变化

    Figure  5.  Changs of hardness with temperature and strain rate

    表  1  本构方程参数值

    Table  1.   The parameters of the constitutive equation obtained

    T/Kβn1αnA3
    11730.022043.79640.083680.263410.01274
    12230.027063.167180.085720.315740.10324
    12730.058293.161840.18430.316270.75223
    下载: 导出CSV
  • [1] Fu B G, Wang H W, Zou C M, et al. Microstructural characterization of in situ synthesized TiB in cast Ti-1100-0.10 B alloy[J]. Transactions of Nonferrous Metals Society of China, 2015,25:2206. doi: 10.1016/S1003-6326(15)63833-X
    [2] Cui W F, Zhou L, Luo G Z, et al. Effect of yttrium on mechanical properties, thermal stability and creep resistance of high temperature titanium alloy Ti-1100[J]. Journal of Rare Earths, 1999, 17(1): 38-41.
    [3] Shams SAA, Mirdamadi S, Abbasi S M, et al. Mechanism of martensitic to equiaxed microstructure evolution during hot deformation of a near-alpha Ti alloy[J]. Metallurgical and Materials Transactions A, 2017,48(6):2979−2992.
    [4] 付彬国. 合金元素对铸造Ti-1100合金组织及性能影响[D]. 哈尔滨: 哈尔滨工业大学, 2015.

    Fu Binguo. Effects of alloying elements on microstructures and properties of CAST Ti-1100 alloys[D]. Harbin: Harbin Institute of Technology, 2015.
    [5] Fang Z Z, Paramore J D, Sun P, et al. Powder metallurgy of titanium - past, present, and future[J]. International Materials Reviews, 2017,63(7):1−53. doi: 10.1080/09506608.2017.1366003
    [6] Lütjering G, Williams J C. Titanium[M]. Springer Berlin Heidelberg, 2007.
    [7] Hagiwara M, Emura S. Property enhancement of orthorhombic Ti2AlNb-based intermetallic alloys[J]. Materials Science Forum, 2003,352(1):85.
    [8] Fang Z Z, Sun P, Wang H T. Hydrogen sintering of titanium to produce high density fine grain titanium alloys[J]. Advced Engineering Material, 2012,14:383−387.
    [9] Zhang H R, Niu H Z, Zang M, et al. Microstructures and mechanical behavior of a near α titanium alloy prepared by TiH2-based powder metallurgy[J]. Materials Science & Engineering A, 2020,770:138570.
    [10] Azevedo C R F, Rodrigues D, Neto F B. Ti–Al–V powder metallurgy (PM) via the hydrogenation–dehydrogenation (HDH) process[J]. Journal of Alloys and Compounds, 2003,353(1-2):217-227. doi: 10.1016/S0925-8388(02)01297-5
    [11] Ivasishin O M, Eylon D, Bondarchuk V I, et al. Diffusion during powder metallurgy synthesis of titanium alloys[J]. Defect and DiffusionForum, 2008,277:177-185. doi: 10.4028/www.scientific.net/DDF.277.177
    [12] 马兰, 杨绍利, 李俊翰, 等. 钒钛材料[M]. 北京: 冶金工业出版社, 2020.

    Ma Lan, Yang Shaoli, Li Junhan, et al. Vanadium titanium materials[M]. Beijing: Matellurgy Industry Press, 2020.
    [13] Zhu Yuling, Yang Shaoli, Ma Lan, et al. Effect of titanium hydride content on near-alpha multicomponent high temperature titanium alloy[J]. Iron Steel Vanadium Titanium, 2019,40(5):50−54. (朱钰玲, 杨绍利, 马兰, 等. 氢化钛含量对近α型多元高温钛合金的影响[J]. 钢铁钒钛, 2019,40(5):50−54.
    [14] Yang J, Wang G, Jiao X, et al. High-temperature deformation behavior of the extruded Ti-22Al-25Nb alloy fabricated by powder metallurgy[J]. Materials Characterization, 2018,137:170−179. doi: 10.1016/j.matchar.2018.01.019
    [15] Yang J, Wang G, Jiao X, et al. Hot deformation behavior and microstructural evolution of Ti-22Al-25Nb-1.0B alloy prepared by elemental powder metallurgy[J]. Journal of Alloys and Compounds, 2017,695:1038−1044. doi: 10.1016/j.jallcom.2016.10.228
    [16] Liang Houquan, Guo Hongzhen, Ning Yongquan, et al. Analysis on the constitutive relationship of TC18 titanium alloy based on the softening mechanism[J]. Acta Metallurgical Sinica, 2014,50(7):871-878. (梁后权, 郭鸿镇, 宁永权, 等. 基于软化机制的 TC18钛合金本构关系研究[J]. 金属学报, 2014,50(7):871-878.
    [17] Jia B H, Song W D, Tang H P, et al. Hot deformation behavior and constitutive model of TC18 titanium alloy during compression[J]. Rare Metals, 2014,33(4):383-389. doi: 10.1007/s12598-014-0328-x
    [18] Quan G Z, Wen H R, Jia P, et al. Construction of processing maps based on expanded data by BP-ANN and identification of optimal deforming parameters for Ti-6Al-4V alloy[J]. Int. J. Precis. Eng. Manuf., 2016,17(2):171−180. doi: 10.1007/s12541-016-0022-z
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  364
  • HTML全文浏览量:  33
  • PDF下载量:  191
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-21
  • 录用日期:  2021-11-22
  • 刊出日期:  2021-12-31

目录

    /

    返回文章
    返回