留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

TC4-DT激光熔丝增材制造微观组织与力学性能研究

张大越 刘旭明 张建 李彬周 赵阳 王军生

张大越, 刘旭明, 张建, 李彬周, 赵阳, 王军生. TC4-DT激光熔丝增材制造微观组织与力学性能研究[J]. 钢铁钒钛, 2021, 42(6): 97-101. doi: 10.7513/j.issn.1004-7638.2021.06.013
引用本文: 张大越, 刘旭明, 张建, 李彬周, 赵阳, 王军生. TC4-DT激光熔丝增材制造微观组织与力学性能研究[J]. 钢铁钒钛, 2021, 42(6): 97-101. doi: 10.7513/j.issn.1004-7638.2021.06.013
Zhang Dayue, Liu Xuming, Zhang Jian, Li Binzhou, Zhao Yang, Wang Junsheng. Microstructure and mechanical properties of TC4-DT produced by laser wire-feed additive manufacturing[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(6): 97-101. doi: 10.7513/j.issn.1004-7638.2021.06.013
Citation: Zhang Dayue, Liu Xuming, Zhang Jian, Li Binzhou, Zhao Yang, Wang Junsheng. Microstructure and mechanical properties of TC4-DT produced by laser wire-feed additive manufacturing[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(6): 97-101. doi: 10.7513/j.issn.1004-7638.2021.06.013

TC4-DT激光熔丝增材制造微观组织与力学性能研究

doi: 10.7513/j.issn.1004-7638.2021.06.013
基金项目: 国家重点研发计划资助项目(2017YFB1103703)
详细信息
    作者简介:

    张大越(1987—),女,黑龙江哈尔滨人,博士,高级工程师,主要研究增材制造、材料微观组织表证与计算,电话:010-56352795,E-mail:zhangdayue@ansteel.com.cn

  • 中图分类号: TF823,TG115

Microstructure and mechanical properties of TC4-DT produced by laser wire-feed additive manufacturing

  • 摘要: 激光熔丝增材制造技术在航空航天、海工船舶等领域应用前景广阔。针对TC4-DT材料,在初步优化的工艺参数下,通过激光熔丝增材制造技术制备金属试样,并对试样进行固溶-强化热处理,研究激光熔丝沉积态及热处理态的微观组织、缺陷及室温拉伸力学性能。研究发现,激光熔丝TC4-DT成形态组织为粗大的柱状晶及针状αʹ马氏体,热处理后转变为等轴晶与柱状晶的双相组织,马氏体分解为针状α+β双相组织,固溶-强化热处理后拉伸力学性能与锻件水平相当。
  • 图  1  激光旁轴熔丝增材制造示意

    Figure  1.  Schematic diagram of laser fusing additive manufacturing feeded by wire from side direction

    图  2  激光熔丝增材制造块体试样实物

    Figure  2.  Diagram of blocks by laser fusing additive manufacturing

    图  3  TC4-DT钛合金激光熔丝沉积块体材料拉伸试棒示意

    Figure  3.  Schematic diagram of tensile test bar for TC4-DT block samples deposited by laser fusing additive manufacturing

    图  4  激光熔丝沉积态微观形貌光镜图片

    Figure  4.  Microscopic morphology of the as-deposited laser fusing additive manufacturing sample

    图  5  钛合金块沉积态SEM显微组织

    Figure  5.  SEM of as-deposited titanium alloy sample

    图  6  热处理试样SEM显微组织

    Figure  6.  SEM microstructures of the heat-treated sample

    图  7  热处理态SEM显微组织图片

    Figure  7.  SEM of heat-treated titanium alloy sample

    图  8  热处理态试样中的缺陷

    Figure  8.  Defects morphology of the heat-treated sample

    图  9  沉积态及热处理态拉伸试样断口形貌

    Figure  9.  Fracture morphology of as-deposited and heat-treated tensile specimens

    表  1  TC4-DT丝材化学成分

    Table  1.   The chemical composition of TC4-DT wire %

    CVAlFeTiHNO
    0.0134.036.330.04990.140.00550.0060.034
    下载: 导出CSV

    表  2  激光熔丝试验工艺参数

    Table  2.   Processing parameters of laser wire-feed additive manufacturing

    扫描速度vs/(mm·s−1)送丝速度vf/(mm·s−1)功率P/kW离焦量H/mm光丝距L/mm送丝角α/(°)搭接率/%
    10203.05003050
    下载: 导出CSV

    表  3  TC4-DT钛合金激光熔丝沉积态、热处理态与(GB/T 25137—2010)标准中TC4 ELI退火态合金棒室温拉伸数据对比

    Table  3.   Comparison of tensile data at room temperature of as-deposited, heat-treated laser fusing additive manufactured TC4-DT titanium alloy and TC4 ELI annealed alloy in GB/T 25137—2010 standard

    试样Rm/MPaRp0.2/MPaA/%
    沉积态 976 901 6
    热处理态 1 029 894 9.5
    TC4 ELI锻件(GB/T 25137—2010) 828 759 10
    下载: 导出CSV
  • [1] Jin Hexi, Wei Kexiang, Li Jianming, et al. Research development of titanium alloy in aerospace industry[J]. The Chinese Journal of Nonferrous Metals, 2015,25(2):280−292. (金和喜, 魏克湘, 李建明, 等. 航空用钛合金研究进展[J]. 中国有色金属学报, 2015,25(2):280−292.
    [2] Zhao Yongqing, Ge Peng. Current situation and development of new titanium alloys invented in China[J]. Journal of Aeronautical Materials, 2014,34(4):51−61. (赵永庆, 葛鹏. 我国自主研发钛合金现状与进展[J]. 航空材料学报, 2014,34(4):51−61. doi: 10.11868/j.issn.1005-5053.2014.4.005
    [3] Yang Chuan, Xu Wenchen, Wan Xingjie, et al. Research on near isothermal forging process of TC4 titanium alloy forgings with thin wall and high rib[J]. Journal of Plasticity Engineering, 2019,26(2):69−78. (杨川, 徐文臣, 万星杰, 等. TC4钛合金薄壁高筋构件近等温锻造技术研究[J]. 塑性工程学报, 2019,26(2):69−78. doi: 10.3969/j.issn.1007-2012.2019.02.009
    [4] Liu Shunyu, Shin Yung C. Additive manufacturing of Ti6Al4V alloy: A review[J]. Materials & Design, 2019,164:107.
    [5] Gou Jian, Wang Zhijiang, Hu Shengsun, et al. Effects of CMT+P process and post heat treatment on microstructure and properties of TC4 component by additive manufacturing[J]. Transactions of the China Welding Institution, 2019,40(12):31−35, 46. (勾健, 王志江, 胡绳荪, 等. CMT+P过程及后热处理对TC4钛合金增材构件组织和性能影响[J]. 焊接学报, 2019,40(12):31−35, 46.
    [6] Brandl E, Baufeld B, Leyens C, et al. Additive manufactured Ti-6Al-4V using welding wire: comparison of laser and arc beam deposition and evaluation with respect to aerospace material specifications[J]. Physics Procedia, 2010,5:595−606. doi: 10.1016/j.phpro.2010.08.087
    [7] Ahmed T, Rack H J. Phase transformations during cooling in α+β titanium alloys[J]. Materials Science and Engineering:A, 1998,243(1):206−211.
    [8] Ducato A, Fratini L, Cascia M L, et al. An automated visual inspection system for the classification of the phases of Ti-6Al-4V titanium alloy[C]//Computer Analysis of Images and Patterns. Springer, 2013.
    [9] Wang T, Zhu Y Y, Zhang S Q, et al. Grain morphology evolution behavior of titanium alloy components during laser melting deposition additive manufacturing[J]. Journal of Alloys and Compounds, 2015,632:505−513. doi: 10.1016/j.jallcom.2015.01.256
    [10] Wu Xinhua, Liang Jing, Mei Junfa, et al. Microstructures of laser-deposited Ti–6Al–4V[J]. Materials & Design, 2004,25(2):137−144.
    [11] Qian L, Mei J, Liang J, et al. Influence of position and laser power on thermal history and microstructure of direct laser fabricated Ti–6Al–4V samples[J]. Materials Science and Technology, 2005,21(5):597−605. doi: 10.1179/174328405X21003
    [12] Yu Jun, Rombouts Marleen, Maes Gert, et al. Material properties of Ti6Al4V parts produced by laser metal deposition[J]. Physics Procedia, 2012,39:416−424. doi: 10.1016/j.phpro.2012.10.056
    [13] Zhang Jinzhi, Zhang Anfeng, Wang Hong, et al. Microstructure and anisotropy of high performance TC4 obtained by micro forging laser cladding deposition[J]. Chinese Journal of Lasers, 2019,46(4):102−109. (张金智, 张安峰, 王宏, 等. 微锻造激光熔覆沉积高性能TC4组织与各向异性[J]. 中国激光, 2019,46(4):102−109.
    [14] Gil Mur F X, Rodríguez D, Planell J A. Influence of tempering temperature and time on the α′-Ti-6Al-4V martensite[J]. Journal of Alloys and Compounds, 1996,234(2):287−289. doi: 10.1016/0925-8388(95)02057-8
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  219
  • HTML全文浏览量:  13
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-04
  • 刊出日期:  2021-12-31

目录

    /

    返回文章
    返回