留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热压温度对TC4/Ta 层状复合材料界面元素扩散行为及微观结构的影响

余豪 姜庆伟 张晓青 张守健 张凤珍

余豪, 姜庆伟, 张晓青, 张守健, 张凤珍. 热压温度对TC4/Ta 层状复合材料界面元素扩散行为及微观结构的影响[J]. 钢铁钒钛, 2021, 42(6): 109-114. doi: 10.7513/j.issn.1004-7638.2021.06.015
引用本文: 余豪, 姜庆伟, 张晓青, 张守健, 张凤珍. 热压温度对TC4/Ta 层状复合材料界面元素扩散行为及微观结构的影响[J]. 钢铁钒钛, 2021, 42(6): 109-114. doi: 10.7513/j.issn.1004-7638.2021.06.015
Yu Hao, Jiang Qingwei, Zhang Xiaoqing, Zhang Shoujian, Zhang Fengzhen. Effect of hot-pressing temperature on element diffusion behavior and microstructure of TC4/Ta layered composites[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(6): 109-114. doi: 10.7513/j.issn.1004-7638.2021.06.015
Citation: Yu Hao, Jiang Qingwei, Zhang Xiaoqing, Zhang Shoujian, Zhang Fengzhen. Effect of hot-pressing temperature on element diffusion behavior and microstructure of TC4/Ta layered composites[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(6): 109-114. doi: 10.7513/j.issn.1004-7638.2021.06.015

热压温度对TC4/Ta 层状复合材料界面元素扩散行为及微观结构的影响

doi: 10.7513/j.issn.1004-7638.2021.06.015
基金项目: 国家自然科学基金 (51201077) 资助
详细信息
    作者简介:

    姜庆伟(1978—),男,山东济宁人,工学博士,副教授,通讯作者,主要从事层状金属复合技术的研究工作,E-mail:jqw6@163.com

  • 中图分类号: TF823,TG115

Effect of hot-pressing temperature on element diffusion behavior and microstructure of TC4/Ta layered composites

  • 摘要: 在不同温度下通过高温热压复合制备了TC4/Ta/TC4层状金属复合材料(LMCs),并讨论了界面元素扩散行为、微观结构随热压温度的变化关系。结果表明,在热压和保温过程中两组元元素在界面处发生了明显的扩散行为,两组元实现了良好的冶金结合。高温热压促进了Al、V、Ti、Ta各元素在界面处的扩散,其扩散程度显著影响了界面附近的显微组织。每种元素的扩散深度与原子半径紧密相关,随着原子半径减小,扩散行为发生的更为强烈。元素扩散行为导致界面附近钛基体的相变温度降低,在低于TC4相变温度的950 ℃出现了网篮组织,随着与界面距离的变化呈现不同的微观组织形貌。
  • 图  1  Ti/Ta/Ti层状复合材料热压工艺示意

    Figure  1.  The schematics of hot-pressing process of TC4/Ta/TC4 LMCs

    图  2  不同温度下热压制备的 LMCs 复合界面处的微观组织

    Figure  2.  The composite interface microstructures of LMCs at different temperatures

    (a) 850 ℃;(b) 900 ℃; (c) 950 ℃; (d) 1 000 ℃; (e) 1 050 ℃

    图  3  不同热压温度下Ti/Ta/Ti LMCs中Ti/Ta界面的XRD图谱

    Figure  3.  XRD patterns of Ti/Ta interfaces in Ti/Ta/Ti LMCs at different hot-pressing temperatures

    图  4  Ti/Ta/Ti 层压复合材料界面上的 EDS 元素浓度分布

    Figure  4.  The EDS elemental concentration profiles across the interface in the Ti/Ta/Ti LMCs

    (a) 850 ℃; (b) 900 ℃; (c) 950 ℃; (d) 1 000 ℃; (e) 1 050 ℃

    表  1  商业级纯钽箔和Ti-6Al-4V化学成分

    Table  1.   Chemical compositions of the commercial purity Ta foil and Ti-6Al-4V %

    材料TiAlVFeCNHOWMoNbTa
    Ti-6Al-4VBal.5.73.80.280.070.040.010.15
    Ta 箔0.0010.010.010.04Bal.
    下载: 导出CSV
  • [1] Huang Lujun, An Qi, Geng Lin, et al. Multiscale architecture and superior high-temperature performance of discontinuously reinforced titanium matrix composites[J]. Advanced Materials, 2021,33(6):2000688. doi: 10.1002/adma.202000688
    [2] Pan Deng, Zhang Xin, Hou Xiaodong, et al. TiB nano-whiskers reinforced titanium matrix composites with novel nano-reticulated microstructure and high performance via composite powder by selective laser melting[J]. Materials Science and Engineering:A, 2021,799:140137. doi: 10.1016/j.msea.2020.140137
    [3] Wang Shuai, Huang Lujun, Geng Lin, et al. Microstructure evolution and damage mechanism of layered titanium matrix composites under tensile loading[J]. Materials Science and Engineering:A, 2020,777:139067. doi: 10.1016/j.msea.2020.139067
    [4] Ma Z Y, Tjong S C, Gen L. In-situ Ti-TiB metal–matrix composite prepared by a reactive pressing process[J]. Scr Mater, 2000,42(4):367−373. doi: 10.1016/S1359-6462(99)00354-1
    [5] Alman D E, Hawk J A. The abrasive wear of sintered titanium matrix–ceramic particle reinforced composites[J]. Wear, 1999,225-229:629−639. doi: 10.1016/S0043-1648(99)00065-4
    [6] Huang L J, Geng L, Li A B, et al. In situ TiBw/Ti–6Al–4V composites with novel reinforcement architecture fabricated by reaction hot pressing[J]. Scr. Mater., 2009,60(11):996−999. doi: 10.1016/j.scriptamat.2009.02.032
    [7] Tjong S C, Mai Yiu Wing. Processing-structure-property aspects of particulate- and whisker-reinforced titanium matrix composites[J]. Composites Science and Technology, 2008,68(3):583−601.
    [8] Sen Indrani, Tamirisakandala S, Miracle D B, et al. Microstructural effects on the mechanical behavior of B-modified Ti–6Al–4V alloys[J]. Acta Materialia, 2007,55(15):4983−4993. doi: 10.1016/j.actamat.2007.05.009
    [9] Huang L J, Geng L, Peng H X, et al. Room temperature tensile fracture characteristics of in situ TiBw/Ti6Al4V composites with a quasi-continuous network architecture[J]. Scr. Mater., 2011,64(9):844−847. doi: 10.1016/j.scriptamat.2011.01.011
    [10] Liu B X, Huang L J, Geng L, et al. Microstructure and tensile behavior of novel laminated Ti–TiBw/Ti composites by reaction hot pressing[J]. Materials Science and Engineering:A, 2013,583:182−187. doi: 10.1016/j.msea.2013.06.058
    [11] Liu B X, Huang L J, Geng L, et al. Gradient grain distribution and enhanced properties of novel laminated Ti–TiBw/Ti composites by reaction hot-pressing[J]. Materials Science and Engineering:A, 2014,595:257−265. doi: 10.1016/j.msea.2013.12.013
    [12] Liu B X, Huang L J, Geng L, et al. Effects of reinforcement volume fraction on tensile behaviors of laminated Ti–TiBw/Ti composites[J]. Materials Science and Engineering:A, 2014,610:344−349. doi: 10.1016/j.msea.2014.05.057
    [13] Liu B X, Huang L J, Rong X D, et al. Bending behaviors and fracture characteristics of laminated ductile-tough composites under different modes[J]. Composites Science and Technology, 2016,126:94−105. doi: 10.1016/j.compscitech.2016.02.011
    [14] Huang L J, Wang S, Dong Y S, et al. Tailoring a novel network reinforcement architecture exploiting superior tensile properties of in situ TiBw/Ti composites[J]. Materials Science and Engineering:A, 2012,545:187−193. doi: 10.1016/j.msea.2012.03.019
    [15] Li Pei, Sun Qiaoyan, Xiao Lin, et al. Tuning the morphology of Ti–5Al–5Mo–5V–3Cr–1Zr alloy: From brittle to ductile fracture[J]. Materials Science and Engineering:A, 2020,769:138487. doi: 10.1016/j.msea.2019.138487
    [16] Meng Linglong, Wang Xiaojun, Hu Xiaoshi, et al. Role of structural parameters on strength-ductility combination of laminated carbon nanotubes/copper composites[J]. Composites Part A:Applied Science and Manufacturing, 2019,116:138−146. doi: 10.1016/j.compositesa.2018.10.021
    [17] Xiang Yeyang, Wang Xiaojun, Hu Xiaoshi, et al. Achieving ultra-high strengthening and toughening efficiency in carbon nanotubes/magnesium composites via constructing micro-nano layered structure[J]. Composites Part A:Applied Science and Manufacturing, 2019,119:225−234. doi: 10.1016/j.compositesa.2019.02.006
    [18] Lu Jinwen, Dong Longlong, Liu Yue, et al. Simultaneously enhancing the strength and ductility in titanium matrix composites via discontinuous network structure[J]. Composites Part A:Applied Science and Manufacturing, 2020,136:105971. doi: 10.1016/j.compositesa.2020.105971
    [19] Wei Liangxiao, Liu Xuyang, Zheng Shoutao, et al. Micromechanical and tribological behavior of titanium matrix composites reinforced with graphene oxide[J]. Mater Chem Phys, 2021,269:124763. doi: 10.1016/j.matchemphys.2021.124763
    [20] Dong L L, Lu J W, Fu Y Q, et al. Carbonaceous nanomaterial reinforced Ti-6Al-4V matrix composites: Properties, interfacial structures and strengthening mechanisms[J]. Carbon, 2020,164:272−286. doi: 10.1016/j.carbon.2020.04.009
    [21] Xiao Lu, Lu Weijie, Yang Zhifeng, et al. Effect of reinforcements on high temperature mechanical properties of in situ synthesized titanium matrix composites[J]. Materials Science and Engineering:A, 2008,491(1):192−198.
    [22] Esmaeili Mohammad Mahdi, Mahmoodi Mahboobeh, Imani Rana. Tantalum carbide coating on Ti-6Al-4V by electron beam physical vapor deposition method: Study of corrosion and biocompatibility behavior[J]. International Journal of Applied Ceramic Technology, 2017,14(3):374−382. doi: 10.1111/ijac.12658
    [23] Li Ren, Gu Yi, Zeng Fanhao, et al. High temperature diffusion behavior between Ta-10 W coating and CP-Ti and TC4 alloy[J]. Surface and Coatings Technology, 2021,406:126669. doi: 10.1016/j.surfcoat.2020.126669
    [24] Mali V I, Bataev A A, Maliutina Iu N, et al. Microstructure and mechanical properties of Ti/Ta/Cu/Ni alloy laminate composite materials produced by explosive welding[J]. The International Journal of Advanced Manufacturing Technology, 2017,93(9):4285−4294.
    [25] Cao R, Ding Y, Yan Y J, et al. Effect of heat treatment on interface behavior of martensite/austenite multilayered composites by accumulative hot roll bonding[J]. Compos Interfaces, 2019,26(12):1069−1085. doi: 10.1080/09276440.2019.1583007
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  276
  • HTML全文浏览量:  18
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-02
  • 录用日期:  2021-11-19
  • 刊出日期:  2021-12-31

目录

    /

    返回文章
    返回