留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

TiAl合金建筑材料焊后热处理组织及性能研究

廖晨雅 黎姝洵

廖晨雅, 黎姝洵. TiAl合金建筑材料焊后热处理组织及性能研究[J]. 钢铁钒钛, 2021, 42(6): 184-190. doi: 10.7513/j.issn.1004-7638.2021.06.027
引用本文: 廖晨雅, 黎姝洵. TiAl合金建筑材料焊后热处理组织及性能研究[J]. 钢铁钒钛, 2021, 42(6): 184-190. doi: 10.7513/j.issn.1004-7638.2021.06.027
Liao Chenya, Li Shuxun. Microstructure and properties of architectural TiAl alloy with heat treatment after welding[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(6): 184-190. doi: 10.7513/j.issn.1004-7638.2021.06.027
Citation: Liao Chenya, Li Shuxun. Microstructure and properties of architectural TiAl alloy with heat treatment after welding[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(6): 184-190. doi: 10.7513/j.issn.1004-7638.2021.06.027

TiAl合金建筑材料焊后热处理组织及性能研究

doi: 10.7513/j.issn.1004-7638.2021.06.027
详细信息
    作者简介:

    廖晨雅(1988—),女,四川达州人,硕士,讲师,工程师,主要从事建筑技术与材料科学研究,E-mail:25170605@qq.com

  • 中图分类号: TF823, TG456

Microstructure and properties of architectural TiAl alloy with heat treatment after welding

  • 摘要: 对建筑用TiAl合金电子束焊接接头进行了两种热处理试验研究,借助金相显微镜(OM)分析了接头不同区域的显微组织,并对焊接接头进行显微硬度测试,分析了两种热处理方式对建筑TiAl合金焊接接头组织及硬度带来的变化。研究表明,TiAl合金电子束焊接后焊缝组织主要为α2相,B相与O相。焊接接头局部热处理后接头硬度较高的区域有所增加,但整体呈下降趋势;热处理后,TiAl合金电子束焊接后合金焊缝区的B2相尺寸减小,但B2相分解的O相板条尺寸变大。整体热处理后焊接接头的显微硬度整体有所降低。两种热处理均能降低焊缝区显微硬度,并分布较为平稳。
  • 图  1  电子束局部热处理原理

    Figure  1.  Principle of electron beam zonal heat treatment

    图  2  TiAl合金焊接接头硬度测试点分布

    Figure  2.  Hardness test points of welded jointsof TiAl alloy

    图  3  TiAl合金电子束焊接接头显微组织

    Figure  3.  Microstructure of electron beam welded joint of TiAl alloy

    图  4  Ti-22Al-xNb合金相图[18]

    Figure  4.  Phase diagram of Ti-22Al-xNb alloy

    图  5  TiAl合金电子束焊接接头硬度分布

    Figure  5.  Hardness distribution of electron beam welded joint of TiAl alloy

    图  6  Ti2AlNb合金电子束焊接头经局部热处理后的显微组织

    Figure  6.  Microstructure of Ti2AlNb alloy electron beam welded joints after local heat treatment

    图  7  整体热处理后接头显微组织

    Figure  7.  Microstructure of joints after integral heat treatment

    图  8  TiAl合金电子束焊后热处理焊接接头硬度分布

    Figure  8.  Hardness distribution of welded joints after electron beam heat treatment of TiAl alloy

    图  9  整体热处理温度对焊后接头显微硬度的影响

    Figure  9.  Effect of overall heat treatment temperature on microhardness of welded joint

    表  1  Ti-12Al-25Nb合金板化学成分

    Table  1.   Chemical compositions of Ti-12Al-25Nb plate material %

    AlNbVOHNTi
    10.6245.225.42≤0.08≤0.01≤0.02余量
    下载: 导出CSV

    表  2  Ti-12Al-25Nb合金基本性能

    Table  2.   Main properties of Ti-12Al-25Nb

    温度/℃抗拉强度/MPa屈服强度/MPa延伸率/%弹性模量/GPa
    室温104594711.399103
    65095284664091
    下载: 导出CSV

    表  3  TiAl合金焊接与热处理工艺参数

    Table  3.   Process parameters of electron beam welding and heat treatment of TiAl alloy

    序号工艺加速电压
    U/kV
    聚焦电流If/mA电子束流Ib/mA焊接速度v/(mm·min−1)扫描时间t/s
    1焊态12050030800
    2局部热处理1206006400800
    下载: 导出CSV
  • [1] 周戒. 房屋建筑工程专业基础知识[M]. 北京: 中国环境科学出版社, 2010: 42−50.

    Zhou Jie. Basic knowledge of housing construction engineering[M]. Beijing: China Environmental Science Press, 2010: 42−50.
    [2] Lin Junpin, Chen Guoliang. Development of TiAl intermetallic based compound[J]. Materials China, 2009,28(1):31−37. (林均品, 陈国良. TiAl基金属间化合物的发展[J]. 中国材料进展, 2009,28(1):31−37.
    [3] 彰国社[日]. 建筑细部集成[M]. 翻译编委会译. 沈阳: 辽宁科学技术出版社, 2000.

    Zhang Guoshe [Japan]. Integration of architectural details[M]. Translated by the Translation Editorial Committee. Shenyang: Liaoning Science and Technology Press, 2000.
    [4] Yang Hong, Chen Ganglun. Titanium and its application in architecture[J]. Industrial Architecture, 2001,32(12):81−82. (杨红, 陈纲伦. 钛金属及其在建筑上的应用[J]. 工业建筑, 2001,32(12):81−82. doi: 10.3321/j.issn:1000-8993.2001.12.028
    [5] Fu Pengfei, Fu Gang, Mao Zhiyong, et al. Medium pressure electron beam local heat treatment technology for TC4 titanium alloy welded joints[J]. Welding, 2005,(2):24−27. (付鹏飞, 付刚, 毛智勇, 等. TC4钛合金焊接接头中压电子束局部热处理技术[J]. 焊接, 2005,(2):24−27. doi: 10.3969/j.issn.1001-1382.2005.02.006
    [6] Jin Yizhen, Wen Jialing, Liu Xin, et al. In-situ observation of fatigue fracture process of electron beam welded joint of TC4-DT titanium alloy[J]. Hot Working Process, 2012,41(19):11−13. (金宜振, 温家伶, 刘昕, 等. TC4-DT钛合金电子束焊接接头疲劳断裂过程的原位观测[J]. 热加工工艺, 2012,41(19):11−13.
    [7] Liu Pengtao, Zhao Xiujuan, Liu Xin, et al. Effect of hydrogen on fatigue fracture characteristics of electron beam welded joints of TC4 titanium alloy[J]. Hot Working Process, 2011,40(13):130−133. (刘鹏涛, 赵秀娟, 刘昕, 等. 氢对TC4钛合金电子束焊接头疲劳断裂特性的影响[J]. 热加工工艺, 2011,40(13):130−133. doi: 10.3969/j.issn.1001-3814.2011.13.044
    [8] Chen Guoqing, Zhang Binggang, He Jingshan, et al. Electron beam welding of TiAl based alloys[J]. Chinese Journal of Nonferrous Metals, 2007,(17):36−40. (陈国庆, 张秉刚, 何景山, 等. TiAl基合金的电子束焊接[J]. 中国有色金属学报, 2007,(17):36−40.
    [9] Wu Kai, Yao Wei, Zhang Tiejun, et al. Effect of heat treatment on microstructure and properties of electron beam welded joints of Ti2AlNb alloy[J]. Metal Heat Treatment, 2018,43(4):67−71. (吴凯, 姚为, 张铁军, 等. 热处理对Ti2AlNb合金电子束焊接接头组织和性能的影响[J]. 金属热处理, 2018,43(4):67−71.
    [10] Ge Miaomiao, Yao Zekun, Tu Weijian, et al. Effect of annealing on microstructure and tensile properties of Ti-22Al-25Nb / TC11 electron beam welded joint[J]. Metal Heat Treatment, 2015,40(8):106−109. (葛苗苗, 姚泽坤, 涂唯坚, 等. 退火对Ti-22Al-25Nb/TC11电子束焊接接头组织与拉伸性能的影响[J]. 金属热处理, 2015,40(8):106−109.
    [11] Luo Xin, Yao Zekun, Qin Chun, et al. Effect of heat treatment on microstructure and properties of Ti-22Al-25Nb / TC11 double alloy welded joint[J]. Metal Heat Treatment, 2015,40(7):20−24. (罗鑫, 姚泽坤, 秦春, 等. 热处理对Ti-22Al-25Nb/TC11双合金焊接接头组织与性能的影响[J]. 金属热处理, 2015,40(7):20−24.
    [12] Yu Chen, Zhang Yupeng, Fang Weiping, et al. Effect of post weld heat treatment on residual stress of 100 mm TC4 titanium alloy electron beam welded joint[J]. Journal of Material Heat Treatment, 2018,39(7):151−155. (余陈, 张宇鹏, 房卫萍, 等. 焊后热处理对100 mm TC4钛合金电子束焊接头残余应力的影响[J]. 材料热处理学报, 2018,39(7):151−155.
    [13] Fang Weiping, Li Xiaohui, Zhang Yupeng, et al. Effect of heat treatment on mechanical properties of welded joint of electronbeam welding for TC4 titanium alloy with 100 mm thickness[J]. Electric Welding Machine, 2017,47(6):82−87.
    [14] Ahn J, He E, Chen L, et al. Prediction and measurement of residual stresses and distortions in fibre laser welded Ti-6Al-4V considering phase transformation[J]. Materials and Design, 2017,115:441−457. doi: 10.1016/j.matdes.2016.11.078
    [15] Ma Quan, Xin Shewei, Song Kai, et al. Effect of heat treatment on microstructure and mechanical properties of electron beam welding of Ti-1300 high strength titanium alloy[J]. Rare Metal Materials and Engineering, 2019,48(8):2724−2728. (马权, 辛社伟, 宋凯, 等. 热处理对Ti-1300高强钛合金电子束焊接组织和力学性能的影响[J]. 稀有金属材料与工程, 2019,48(8):2724−2728.
    [16] Wang Shiqing, Xing Bo, Zhao Qizhe, et al. Effects of different heat treatments on microstructure and mechanical properties of TC4 / Ti60 electron beam welded joint[J]. Electric Welding Machine, 2020,50(5):16−20. (王世清, 邢博, 赵启喆, 等. 不同热处理对TC4/Ti60电子束焊接头微观组织及力学性能的影响[J]. 电焊机, 2020,50(5):16−20.
    [17] Shen Zhengxiang, Yuan Shuqiang, Yang Hui, et al. Effect of electron beam local scanning on microstructure and impact property of 40CrMnSiB steel[J]. Heat Treatment of Metals, 2017,42(1):87−90.
    [18] Boehlert C J. The phase evolution and microstructural stability of an orthorhombic Ti-23Al-27Nb alloy[J]. Journal of Phase Equilibria, 1999,20(2):101−108. doi: 10.1007/s11669-999-0007-z
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  307
  • HTML全文浏览量:  18
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-01
  • 刊出日期:  2021-12-31

目录

    /

    返回文章
    返回