留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钒掺杂对LiNi1/3Co1/3Mn1/3O2正极材料电化学性能的影响

郑浩 王仕伟 孟伟巍

郑浩, 王仕伟, 孟伟巍. 钒掺杂对LiNi1/3Co1/3Mn1/3O2正极材料电化学性能的影响[J]. 钢铁钒钛, 2022, 43(4): 10-15. doi: 10.7513/j.issn.1004-7638.2022.04.002
引用本文: 郑浩, 王仕伟, 孟伟巍. 钒掺杂对LiNi1/3Co1/3Mn1/3O2正极材料电化学性能的影响[J]. 钢铁钒钛, 2022, 43(4): 10-15. doi: 10.7513/j.issn.1004-7638.2022.04.002
Zheng Hao, Wang Shiwei, Meng Weiwei. Effect of V doping on electrochemical properties of LiNi1/3Co1/3Mn1/3O2 as cathode material for lithium-ion battery[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(4): 10-15. doi: 10.7513/j.issn.1004-7638.2022.04.002
Citation: Zheng Hao, Wang Shiwei, Meng Weiwei. Effect of V doping on electrochemical properties of LiNi1/3Co1/3Mn1/3O2 as cathode material for lithium-ion battery[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(4): 10-15. doi: 10.7513/j.issn.1004-7638.2022.04.002

钒掺杂对LiNi1/3Co1/3Mn1/3O2正极材料电化学性能的影响

doi: 10.7513/j.issn.1004-7638.2022.04.002
详细信息
    作者简介:

    郑浩(1986—),男,重庆梁平人,博士,研究员,主要从事纳米功能材料开发等研究,E-mail:zhengaho1986@126.com

  • 中图分类号: TF841.3,TM911

Effect of V doping on electrochemical properties of LiNi1/3Co1/3Mn1/3O2 as cathode material for lithium-ion battery

  • 摘要: LiNi1/3Co1/3Mn1/3O2 (LNCM)因其高比容量等优点在动力电池领域受到广泛关注。然而,较差的循环性能和严重的安全问题限制了其应用前景。离子掺杂是提高材料电化学性能的有效方法之一。采用溶胶-凝胶法,以NH4VO3为钒源,成功制备了钒掺杂LiNi1/3-xCo1/3Mn1/3VxO2正极材料。结果表明:LiNi1/3-0.02Co1/3Mn1/3V0.02O2 (LNCM-V)电极材料表现出优秀的储锂性能(0.5 C时, 80次循环后,放电比容量为169 mAh/g)。通过V5+替代LiNi1/3Co1/3Mn1/3O2正极材料中部分Ni2+离子,有效地降低了Li+/Ni2+离子混排,稳定了正极材料的晶体结构,Li+离子的扩散系数得到增加,使Li+脱嵌过程中LNCM-V材料结构变得更加稳定。
  • 图  1  LNCM和LNCM-V样品的XRD谱

    Figure  1.  XRD patterns of the LNCM and LNCM-V samples

    图  2  (a, b) LNCM和(c, d) LNCM-V样品的SEM形貌

    Figure  2.  SEM images of the (a, b) LNCM and (c, d) LNCM-V samples

    图  3  (a) LNCM和LNCM-V样品的循环性能,(b) LNCM-V样品的充放电曲线,(c) LNCM和LNCM-V样品的库仑效率,(d) LNCM和LNCM-V样品的倍率性能

    Figure  3.  (a) Cycle performances of the LNCM and LNCM-V samples, (b) Charge/discharge profiles of the LNCM-V sample, (c) Coulombic efficiency of the LNCM and LNCM-V samples, (d) Rate performance of the LNCM and LNCM-V samples

    图  4  LNCM和LNCM-V样品的阻抗谱

    Figure  4.  EIS of the LNCM and LNCM-V samples

    表  1  LNCM和 LNCM-V样品的晶胞参数

    Table  1.   Lattice parameters of the LNCM and LNCM-V samples

    a/nmc /nmR(I003/I104)
    LNCM0.285611.42231.22
    LNCM-V0.285931.42351.36
    下载: 导出CSV
  • [1] Aida T, Tsutsui Y, Kanada S, et al. Ammonium tungstate modified Li-rich Li1+xNi0.35Co0.35Mn0.30O2 to improve rate capability and productivity of lithium-ion batteries[J]. Journal of Solid State Electrochemistry, 2017,21:2047−2054. doi: 10.1007/s10008-017-3586-3
    [2] Hy S, Liu H, Zhang M, et al. Performance and design considerations for lithium excess layered oxide positive electrode materials for lithium ion batteries[J]. Energy Environmental Science, 2016,9:1931−1954. doi: 10.1039/C5EE03573B
    [3] Chen Y, Wang G X, Konstantinov K, et al. Synthesis and characterization of LiCoxMnyNi1-x-yO2 as a cathode material for secondary lithium batteries[J]. Journal of Power Sources, 2003,119-121:184−188.
    [4] Sun Y K, Myung S T, Park B C, et al. High-energy cathode material for long-life and safe lithium batteries[J]. Nature Materials, 2009,8:320−324. doi: 10.1038/nmat2418
    [5] Yu Y, Luo Y F, Wu H C, et al. Ultrastretchable carbon nanotube composite electrodes for flexible lithium-ion batteries[J]. Nanoscale, 2018,10:19972−19978. doi: 10.1039/C8NR05241G
    [6] Zheng H, Chen X, Yang Y, et al. Self-assembled LiNi1/3Co1/3Mn1/3O2 nanosheet cathode with high electrochemical performance[J]. ACS Applied Materials Interfaces, 2017,9:39560−39568. doi: 10.1021/acsami.7b10264
    [7] Yoon C S, Park K J, Kim U H, et al. High-energy Ni rich Li[NixCoyMn1-x-y]O2 cathodes via compositional partitioning for next generation electric vehicles[J]. Chemistry of Materials, 2017,29:10436−10445. doi: 10.1021/acs.chemmater.7b04047
    [8] Li L, Liu Q, Huang J J, et al. Synthesis and electrochemical properties of Zn-doping LiNi1/3Co1/3Mn1/3O2 cathode material for lithium-ion battery application[J]. Journal of Materials Science:Materials in Electronics, 2020,31:12409−12416. doi: 10.1007/s10854-020-03787-9
    [9] Yang X Q, Tang Z F, Wang H Y, et al. Improving the electrochemical performance of LiNi0.5Co0.2Mn0.3O2 by double-layer coating with Li2TiO3 for lithium-ion batteries[J]. Ionics, 2016,22:2235−2238. doi: 10.1007/s11581-016-1792-0
    [10] Yang X H, Zuo Z C, Wang H Y, et al. The contradiction between the half-cell and full-battery evaluations on the tungsten-coating LiNi0.5Co0.2Mn0.3O2 cathode[J]. Electrochimica Acta, 2015,180:604−609. doi: 10.1016/j.electacta.2015.08.150
    [11] Yang D J, Li X J, Wu N N, et al. Effect of moisture content on the electrochemical performance of LiNi1/3Co1/3Mn1/3O2/graphite battery[J]. Electrochimica Acta, 2016,188:611−618. doi: 10.1016/j.electacta.2015.12.063
    [12] Dianat A, Seriani N, Bobeth M, et al. Effects of Al-doping on the properties of Li–Mn–Ni–O cathode materials for Li-ion batteries: an ab initio study[J]. Journal of Materials Chemistry A, 2013,1:9273−9280. doi: 10.1039/c3ta11598d
    [13] Li H J, Chen G, Zhang B, et al. Advanced electrochemical performance of Li[Ni(1/3−x)FexCo1/3Mn1/3]O2 as cathode materials for lithium-ion battery[J]. Solid State Communications, 2008,146:115−120. doi: 10.1016/j.ssc.2008.02.006
    [14] Chen Y H, Zhang J, Li Y, et al. Effects of doping high-valence transition metal (V, Nb and Zr) ions on the structure and electrochemical performance of LIB cathode material LiNi0.8Co0.1Mn0.1O2[J]. Physical Chemistry Chemical Physics, 2021,23:11528. doi: 10.1039/D1CP00426C
    [15] Zhu H L, Xie T, Chen Z Y, et al. The impact of vanadium substitution on the structure and electrochemical performance of LiNi0.5Co0.2Mn0.3O2[J]. Electrochimica Acta, 2014,135:77−85. doi: 10.1016/j.electacta.2014.04.183
    [16] Hu Z Y, Wang L L, Luo Y Z, et al. Vanadium-doped LiNi1/3Co1/3Mn1/3O2 with decreased lithium/nickel disorder as high-rate and long-life lithium ion battery cathode[J]. Science Advanced Today, 2015,1:25218.
    [17] Yang C F, Zhang X S, Huang M Y, et al. Preparation and rate capability of carbon coated LiNi1/3Co1/3Mn1/3O2 as cathode material in lithium ion batteries[J]. ACS Applied Materials Interfaces, 2017,9:12408−12415. doi: 10.1021/acsami.6b16741
    [18] Riekehr L, Liu J L, Schwarz B, et al. Effect of pristine nanostructure on first cycle electrochemical characteristics of lithium-rich lithium-nickel-cobalt-manganese-oxide cathode ceramics for lithium ion batteries[J]. Journal of Power Sources, 2016,306:135−147. doi: 10.1016/j.jpowsour.2015.11.082
    [19] Meng X, Cao H, Hao J, et al. Sustainable preparation of LiNi1/3Co1/3Mn1/3O2-V2O5 cathode materials by recycling waste materials of spent lithium-ion battery and vanadium-bearing slag[J]. ACS Sustainable Chemistry Engineering, 2018,6:5797−5805. doi: 10.1021/acssuschemeng.7b03880
    [20] Peng L L, Zhu Y, Khakoo U, et al. Self-assembled LiNi1/3Co1/3Mn1/3O2 nanosheet cathodes with tunable rate capability[J]. Nano Energy, 2015,17:36−42. doi: 10.1016/j.nanoen.2015.07.031
    [21] Wu F, Wang M, Su Y, et al. Effect of TiO2-coating on the electrochemical performances of LiNi1/3Co1/3Mn1/3O2[J]. Journal of Power Sources, 2009,191:628−632. doi: 10.1016/j.jpowsour.2009.02.063
    [22] Cabelguen P E, Peralta D, Cugnet M, et al. Impact of morphological changes of LiNi1/3Co1/3Mn1/3O2 on lithium-ion cathode performances[J]. Journal of Power Sources, 2017,346:13−23. doi: 10.1016/j.jpowsour.2017.02.025
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  218
  • HTML全文浏览量:  71
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-14
  • 刊出日期:  2022-09-14

目录

    /

    返回文章
    返回