Research progress and perspectives of hydrochloric acid hydrolysis technology for titanium dioxide production
-
摘要: 盐酸法是继硫酸法、氯化法之后一种新型的钛白粉生产工艺,该工艺具有废物产量少、原料要求低、能够生产金红石型和锐钛型两种产品的特点。水解是盐酸法生产二氧化钛工艺的重要工序之一,不仅影响收率,还能够对产品的粒径分布、形貌、晶体结构等产生重大影响。阐述了包括常压水解、加压水解、微波水解、低温水解、连续水解、喷雾水解在内的六种盐酸法水解技术,以及各自的技术路线和基本原理,分析总结了其优缺点。经过综合比较,认为常压水解和加压水解技术实现工业化的可能性较大;微波水解和连续水解技术比较适合制备纳米锐钛型二氧化钛;而连续水解和喷雾水解技术尚未完善,还有待进一步研究。Abstract: Hydrochloric acid method is a new type of titanium dioxide production process following sulfuric acid method and chlorination method, which has the characteristics of less waste output, low requirements for raw materials, and can produce rutile and anatase. Hydrolysis is one of the important processes in the production of titanium dioxide by hydrochloric acid method. Hydrolysis can not only affect the yield, but also have a significant impact on the particle size distribution, morphology and crystal structure of the product. This paper introduces six hydrochloric acid hydrolysis technologies including atmospheric pressure hydrolysis, pressurized hydrolysis, microwave hydrolysis, low temperature hydrolysis, continuous hydrolysis and spray hydrolysis, expounds their respective technical routes and basic principles, analyzes and summarizes their advantages and disadvantages. Through the comprehensive comparison of these common hydrolysis technologies, it is considered that atmospheric pressure hydrolysis technology and pressurized hydrolysis technology are more likely to realize industrialization; Microwave hydrolysis technology and continuous hydrolysis technology are more suitable for the preparation of nanosized anatase titanium dioxide; The continuous hydrolysis and spray hydrolysis technologies are, however, not perfect and need to be further studied.
-
Key words:
- titanium dioxide /
- hydrochloric acid method /
- hydrolysis /
- metatitanic acid /
- crystal form
-
表 1 盐酸法水解技术比较
Table 1. Comparison of hydrochloric acid hydrolysis techniques
技术路线 优点 缺点 常压水解 技术相对简单,容易实现工业化 存在批次间质量波动,操作较为复杂,生产效率低 加压水解 反应速率快,通用性强,可生产金红石和锐钛产品 存在批次间质量波动,需使用压力容器,存在一定的安全隐患 微波水解 反应速率快,适合生产纳米二氧化钛产品 存在批次间质量波动,需定制专用微波反应设备,投资成本高 低温水解 反应温度低,操作简单,适合生产小批量纳米二氧化钛 存在批次间质量波动,生产效率低 连续水解 生产效率高,质量相对稳定 工艺复杂,需使用定制设备,投资成本高 喷雾水解 生产效率高,工艺流程短,质量相对稳定 需使用定制设备,投资成本高,技术难度较高 -
[1] Gan Yuxin, Zhang Shuaiqi, Wang Zhige, et al. Application and research progress of titanium dioxide materials[J]. Technology & Development of Chemical, 2020,49(9):46−48. (甘禹鑫, 张帅奇, 王志鸽, 等. 二氧化钛材料的应用研究进展[J]. 化工技术与开发, 2020,49(9):46−48.Gan Yuxin, Zhang Shuaiqi, Wang Zhige, et al. Application and research progress of titanium dioxide materials[J]. Technology & Development of Chemical. 2020, 49(9): 46-48. [2] Gui Zhengtao, Wang Wenli, Li Jiankang, et al. Preparation, modification and application of titanium dioxide[J]. Modern Salt and Chemical Industry, 2021,48(5):12−14. (桂正涛, 王文利, 李建康, 等. 二氧化钛的制备、改性及其应用研究[J]. 现代盐化工, 2021,48(5):12−14. doi: 10.3969/j.issn.1005-880X.2021.05.005Gui Zhengtao, Wang Wenli, Li Jiankang, et al. Preparation, modification and application of titanium dioxide[J]. Modern Salt and Chemical Industry, 2021, 48(5): 12-14. doi: 10.3969/j.issn.1005-880X.2021.05.005 [3] 刘松翠. 三种不同晶型二氧化钛的合成与光活性及氟离子修饰对板钛矿二氧化钛光活性的影响[D]. 武汉: 中南民族大学, 2009.Liu Songcui. Synthesis and photoactivity of three different crystal types of titanium dioxide and the effect of fluoride ion modification on the photoactivity of plate titanium dioxide[D]. Wuhan: South-Central Minzu University, 2009. [4] Zhang Xiuzhen, Jiang Wenchuan, Lu Wei, et al. Development of preparation technology of rutile titanium dioxide with low oil absorption[J]. Chemical Engineering Design Communications, 2020,46(6):167−168,176. (张修臻, 姜文川, 鲁伟, 等. 低吸油量金红石钛白粉制备技术的研发[J]. 化工设计通讯, 2020,46(6):167−168,176. doi: 10.3969/j.issn.1003-6490.2020.06.106Zhang Xiuzhen, Jiang Wenchuan, Lu Wei, et al. Development of preparation technology of rutile titanium dioxide with low oil absorption[J]. Chemical Engineering Design Communications, 2020, 46(6): 167-168, 176. doi: 10.3969/j.issn.1003-6490.2020.06.106 [5] Bi Sheng. Status of titanium dioxide industry in China and the development prospect[J]. Iron Steel Vanadium Titanium, 2021,42(5):99−108. (毕胜. 近年中国钛白粉行业基本状况及发展展望[J]. 钢铁钒钛, 2021,42(5):99−108. doi: 10.7513/j.issn.1004-7638.2021.05.016Bi Sheng. Status of titanium dioxide industry in China and the development prospect[J]. Iron Steel Vanadium Titanium, 2021, 42(5): 99-108. doi: 10.7513/j.issn.1004-7638.2021.05.016 [6] Zhang Wensheng, Zhu Zhaowu, Cheng Chuyong. A literature review of titanium metallurgical processes[J]. Hydrometallurgy, 2011,108(3-4):177−188. doi: 10.1016/j.hydromet.2011.04.005 [7] Zhao Ding, Liu Feng, Zhang Meijie, et al. Present situation and development direction of preparation technology of titanium dioxide in China[J]. Chemical Fiber & Textile Technology, 2021,50(12):51−53. (赵丁, 刘峰, 张美杰, 等. 我国钛白粉制备工艺的现状及发展方向[J]. 化纤与纺织技术, 2021,50(12):51−53. doi: 10.3969/j.issn.1672-500X.2021.12.018Zhao Ding, Liu Feng, Zhang Meijie, et al. Present situation and development direction of preparation technology of titanium dioxide in China[J]. Chemical Fiber & Textile Technology, 2021, 50(12): 51-53. doi: 10.3969/j.issn.1672-500X.2021.12.018 [8] Wu You, Lan Guangming. Preparation technology and progress analysis in the global three major titanium dioxide process by hydrochloric acid[J]. Titanium Industry Progress, 2021,38(1):37−44. (吴优, 兰光铭. 全球三大盐酸法钛白制备工艺及进展分析[J]. 钛工业进展, 2021,38(1):37−44.Wu You, Lan Guangming. Preparation technology and progress analysis in the global three major titanium dioxide process by hydrochloric acid[J]. Titanium Industry Progress, 2021, 38(1): 37-44. [9] 唐舒扬, 郭宇峰, 郑富强, 等. 钛白粉的制备方法现状及展望[J/OL]. 无机盐工业, https://doi.org/10.19964/j/issn.1006-4990.2021-0503.Tang Shuyang, Guo Yufeng, Zheng Fuqiang, et al. Present situation and prospects of preparation methods of titanium dioxide[J/OL]. Inorganic Chemicals Industry, https://doi.org/10.19964/j/issn.1006-4990.2021-0503. [10] Chen Hua, Tian Congxue, Liang Anbing, et al. Effects of hydrolysis conditions on rutile titanium white pigment prepared by low concentration of titanyl sulfate solution[J]. Iron Steel Vanadium Titanium, 2014,35(5):7−11. (陈华, 田从学, 梁安兵, 等. 水解条件对低浓度钛液制备金红石型颜料钛白的影响[J]. 钢铁钒钛, 2014,35(5):7−11. doi: 10.7513/j.issn.1004-7638.2014.05.002Chen Hua, Tian Congxue, Liang Anbing, et al. Effects of hydrolysis conditions on rutile titanium white pigment prepared by low concentration of titanyl sulfate solution[J]. Iron Steel Vanadium Titanium, 2014, 35(5): 7-11. doi: 10.7513/j.issn.1004-7638.2014.05.002 [11] Tang Yong, Deng Ke, Zhang Dingming, et al. Production process of titanium dioxide via hydrochloric acid process[J]. Chlor-Alkali Industry, 2014,50(4):36−39. (唐勇, 邓科, 张定明, 等. 盐酸法钛白粉生产工艺[J]. 氯碱工业, 2014,50(4):36−39. doi: 10.3969/j.issn.1008-133X.2014.04.013Tang Yong, Deng Ke, Zhang Dingming, et al. Production process of titanium dioxide via hydrochloric acid process[J]. Chlor-Alkali Industry, 2014, 50(4): 36-39. doi: 10.3969/j.issn.1008-133X.2014.04.013 [12] Shen Xiaoxiao. Current situation and development trend of CTL process to produce high purity TiO2[J]. Engineering and Technological Research, 2013,(6):47−50. (沈小小. CTL工艺生产高纯度TiO2现状及发展趋势[J]. 冶金丛刊, 2013,(6):47−50.Shen Xiaoxiao. Current situation and development trend of CTL process to produce high purity TiO2[J]. Engineering and Technological Research, 2013 (6): 47-50. [13] Zhong Yongming. Recovery technology of hydrochloric acid tail gas[J]. China Chlor-Alkali, 2016,(10):35−36. (钟永铭. 盐酸尾气回收技术改造[J]. 中国氯碱, 2016,(10):35−36. doi: 10.3969/j.issn.1009-1785.2016.10.012Zhong Yongming. Recovery technology of hydrochloric acid tail gas[J]. China Chlor-Alkali, 2016 (10): 35-36. doi: 10.3969/j.issn.1009-1785.2016.10.012 [14] Zhang Ying, Fang Zhigang Zak, Sun Pei, et al. A study on the synthesis of coarse TiO2 powder with controlled particle sizes and morphology via hydrolysis[J]. Powder Technology, 2021,393:650−658. doi: 10.1016/j.powtec.2021.08.014 [15] Mostafa N Y, Shaltout A A, Omar H, et al. Hydrothermal synthesis and characterization of aluminium and sulfate substituted 1.1 nm tobermorites.[J]. Journal of Alloys and Compounds, 2009,467:332−337. doi: 10.1016/j.jallcom.2007.11.130 [16] Wang Hongmei, Tan Xin, Yu Tao, et al. Preparation and photoelectric property of TiO2 nanoparticles with controllable phase junctions[J]. Applied Surface Science, 2014,321:531−537. doi: 10.1016/j.apsusc.2014.10.017 [17] Zheng Wenjun, Liu Xiaodi, Yan Zhiying, et al. Ionic liquid-assisted synthesis of large-scale TiO2 nanoparticles with controllable phase by hydrolysis of TiCl4[J]. ACS Nano, 2009,3(1):115−122. doi: 10.1021/nn800713w [18] Liu Yahui, Shao Dawei, Wang Weijing, et al. Preparation of rutile TiO2 by hydrolysis of TiOCl2 solution: experiment and theory[J]. RSC Advances, 2016,6(64):59541−59549. doi: 10.1039/C6RA04386K [19] Andrea Testino, Ignazio Renato Bellobono, Vincenzo Buscaglia, et al. Optimizing the photocatalytic properties of hydrothermal TiO2 by the control of phase composition and particle morphology: A systematic approach[J]. Journal of the American Chemical Society, 2007,129(12):3564−3575. doi: 10.1021/ja067050+ [20] Mostafa Nasser Y, Mahmoud M H H, Heiba Z K, et al. Hydrolysis of TiOCl2 leached and purified from low-grade ilmenite mineral[J]. Hydrometallurgy, 2013,139:88−94. doi: 10.1016/j.hydromet.2013.08.002 [21] Chen Zhiqin, Zeng Weijun, Li Wenkui, et al. Research progress in preparation of nano TiO2 by microwave hydrothermal method[J]. Management & Technology of SME, 2010,(2):234. (陈智琴, 曾卫军, 李文魁, 等. 微波水热法制备纳米TiO2的研究进展[J]. 中小企业管理与科技, 2010,(2):234.Chen Zhiqin, Ceng Weijun, Li Wenkui, et al. Research progress in preparation of nano TiO2 by microwave hydrothermal method[J]. Management & Technology of SME, 2010 (2): 234. [22] Xu Wenguo, Lu Shixiang, Wang Xingxing, et al. Preparation by microwave-assisted in aqueous phase and optical properties of TiO2[J]. Science and Technology Innovation Herald, 2014,11(19):20−24. (徐文国, 卢士香, 王星星, 等. 微波辅助水相合成TiO2及其催化活性研究[J]. 科技创新导报, 2014,11(19):20−24. doi: 10.3969/j.issn.1674-098X.2014.19.017Xu Wenguo, Lu Shixiang, Wang Xingxing, et al. Preparation by microwave-assisted in aqueous phase and optical properties of TiO2[J]. Science and Technology Innovation Herald, 2014, 11(19): 20-24. doi: 10.3969/j.issn.1674-098X.2014.19.017 [23] 董伟. 微波在恒温水溶液中的特性效应研究[D]. 济南: 山东大学, 2020.Dong Wei. Study on characteristic effect of microwave in thermostatic aqueous solution[D]. Jinan: Shandong University, 2020. [24] 高跃. 水热及微波水热法合成超细纳米TiO2的研究[D]. 哈尔滨: 黑龙江大学, 2011.Gao Yue. Study on synthesis of ultrafine nano TiO2 by hydrothermal and microwave hydrothermal methods[D]. Harbin: Heilongjiang University, 2011. [25] Murugan A V, Samuel V, Ravi V, et al. Synthesis of nanocrystalline anatase TiO2 by microwave hydrothermal method[J]. Materials Letters, 2006,60(4):479−480. doi: 10.1016/j.matlet.2005.09.017 [26] Chen Zhiqin, Chen Xiangliang, Zhang Shujuan, et al. Synthesis and characterization of nanocrystalline anatase by microwave hydrothermal method[J]. Advanced Materials in Microwaves and Optics, 2012,200:104. [27] Ren Lu, Li Yuanzhi, Hou Jingtao, et al. Preparation and enhanced photocatalytic activity of TiO2 nanocrystals with internal pores[J]. ACS Applied Materials & Interfaces, 2014,6(3):1608−1615. [28] Inada Miki, Kamada Kai, Enomoto Naoya, et al. Microwave effect for synthesis of TiO2 particles by self-hydrolysis of TiOCl2[J]. Journal of the Ceramic Society of Japan, 2006,114(1334):814−818. doi: 10.2109/jcersj.114.814 [29] Gou Yuqiang, Hu Fangdi. Preparation of TiO2/ACF composite photocatalyst by low temperature hydrolysis and its application in the degradation of Alizarin red S[J]. Journal of Lanzhou University (Natural Sciences), 2012,48(4):131−135. (苟于强, 胡芳弟. 低温水解制备TiO2/ACF复合光催化剂及其对茜素红S的降解应用[J]. 兰州大学学报(自然科学版), 2012,48(4):131−135.Gou Yuqiang, Hu Fangdi. Preparation of TiO2/ACF composite photocatalyst by low temperature hydrolysis and its application in the degradation of Alizarin red S[J]. Journal of Lanzhou University (Natural Sciences), 2012, 48(4): 131-135. [30] Zhang Yanfeng, Wei Yu, Jia Zhenbin, et al. Rutile type titanium oxide nano-powder was synthesized by low temperature hydrolysis of TiOCl2 solution[J]. Journal of Inorganic Materials, 2001,(6):1217−1219. (张艳峰, 魏雨, 贾振斌, 等. TiOCl2 溶液低温水解合成金红石型氧化钛纳米粉[J]. 无机材料学报, 2001,(6):1217−1219. doi: 10.3321/j.issn:1000-324X.2001.06.031Zhang Yanfeng, Wei Yu, Jia Zhenbin, et al. Rutile type titanium oxide nano-powder was synthesized by low temperature hydrolysis of TiOCl2 solutio [J]. Journal of Inorganic Materials, 2001 (6): 1217-1219. doi: 10.3321/j.issn:1000-324X.2001.06.031 [31] Seo D S, Lee J K, Kim H. Synthesis of TiO2 nanocrystalline powder by aging at low temperature[J]. Journal of Crystal Growth, 2001,233(1-2):298−302. doi: 10.1016/S0022-0248(01)01494-4 [32] Rashidzadeh M, Faridnia B, Ghasemi M R. Low temperature synthesis of TiO2 nanoparticles[J]. Pigment & Resin Technology, 2012,41(5):270−275. [33] Zhao Hangyu, Qiao Jie, Yu Ronghua, et al. Continuous hydrolysis of hydantoin to hydantoic acid and its kinetics[J]. Guangzhou Chemical Industry, 2020,48(7):65−69. (赵航宇, 乔杰, 于荣华, 等. 海因连续水解生成海因酸及其动力学研究[J]. 广州化工, 2020,48(7):65−69. doi: 10.3969/j.issn.1001-9677.2020.07.025Zhao Hangyu, Qiao Jie, Yu Ronghua, et al. Continuous hydrolysis of hydantoin to hydantoic acid and its kinetics[J]. Guangzhou Chemical Industry, 2020, 48(7): 65-69. doi: 10.3969/j.issn.1001-9677.2020.07.025 [34] Zhao Jinghui. Optimization of forward continuous hydrolysis process for high boiling silicone oil[J]. Fine and Specialty Chemicals, 2020,28(10):31−33. (赵景辉. 高沸硅油正向连续水解工艺流程优化[J]. 精细与专用化学品, 2020,28(10):31−33.Zhao Jinghui. Optimization of forward continuous hydrolysis process for high boiling silicone oil[J]. Fine and Specialty Chemicals. , 2020, 28(10): 31-33. [35] Zhang Jie, Feng Tingjie. Study and application of automatic continuous hydrolysis technology for furfural[J]. Henan Chemical Industry, 2019,36(10):33−35. (张洁, 冯亭杰. 糠醛自动化连续水解技术的研究与应用[J]. 河南化工, 2019,36(10):33−35. doi: 10.14173/j.cnki.hnhg.2019.10.010Zhang Jie, Feng Tingjie. Study and application of automatic continuous hydrolysis technology for furfural[J]. Henan Chemical Industry, 2019, 36(10): 33-35. doi: 10.14173/j.cnki.hnhg.2019.10.010 [36] Kim K D, Kim H T. Synthesis of titanium dioxide nanoparticles using a continuous reaction method[J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2020,207:263−269. [37] Willem P C Duyvesteyn, Timothy Malcome Spitler, Bruce James Sabacky, et al. Processing aqueous titanium chloride solutions to ultrafine titanium dioxide: US Patent, US006440383B1[P]. 2002-08-27.