留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

机械球磨AB5+x%80VFe复合储氢合金的微观结构与电化学性能

李丽荣

李丽荣. 机械球磨AB5+x%80VFe复合储氢合金的微观结构与电化学性能[J]. 钢铁钒钛, 2022, 43(4): 48-54. doi: 10.7513/j.issn.1004-7638.2022.04.008
引用本文: 李丽荣. 机械球磨AB5+x%80VFe复合储氢合金的微观结构与电化学性能[J]. 钢铁钒钛, 2022, 43(4): 48-54. doi: 10.7513/j.issn.1004-7638.2022.04.008
Li Lirong. Microstructure and electrochemical properties of ball-milled AB5+x%VFe alloys[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(4): 48-54. doi: 10.7513/j.issn.1004-7638.2022.04.008
Citation: Li Lirong. Microstructure and electrochemical properties of ball-milled AB5+x%VFe alloys[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(4): 48-54. doi: 10.7513/j.issn.1004-7638.2022.04.008

机械球磨AB5+x%80VFe复合储氢合金的微观结构与电化学性能

doi: 10.7513/j.issn.1004-7638.2022.04.008
基金项目: 国家自然科学基金资助项目(51961032);内蒙古自然科学基金分析测试专项(2022FX02)。
详细信息
    作者简介:

    李丽荣(1983-),女,内蒙古乌兰察布人,副教授,主要从事储氢材料研究,E-mail:nmg0809@163.com

  • 中图分类号: TF841.3,TG146.4

Microstructure and electrochemical properties of ball-milled AB5+x%VFe alloys

  • 摘要: 采用机械球磨方法制备了MlNi3.55Co0.75Mn0.4Al0.3+x%VFe(质量分数,x=5,10,15,20)储氢合金,研究了合金晶体结构和电化学性能。微结构分析表明,主相AB5晶胞参数a及体积V随球磨时间增加而增加。电化学研究表明,合金的最大容量Cmax及氢扩散系数Dx增加先增加后减少, x=10时达到最大值,分别为310 mAh/g和 7.6×10−11 cm2/s。对合金进行了循环稳定性测试,结果表明,MlNi3.55Co0.75Mn0.4Al0.3+10%VFe球磨10 h的合金在100次循环后放电容量保持率为98%。
  • 图  1  GITT法原理

    Figure  1.  Schematic diagram of GITT

    图  2  球磨15 h的XRD谱

    Figure  2.  The XRD patterns of composites ball-milled 15 h

    图  3  AB5+x%VFe复合储氢合金SEM图像

    Figure  3.  SEM images of ball-milled (15 h) MlNi3.55Co0.75Mn0.4Al0.3+x%VFe composites

    图  4  AB5+10%VFe储氢合金电子显微镜图像

    Figure  4.  SEM images of ball-milled MlNi3.55Co0.75Mn0.4Al0.3+10%VFe composites for different time

    图  5  AB5+10%VFe球磨15 h复合型储氢合金SEM及EDS分析

    Figure  5.  SEM images and EDS spectra of ball-milled (15 h) MlNi3.55Co0.75Mn0.4Al0.3+10%VFe composites

    图  6  最大放电比容量Cmax与钒铁添加量x的关系

    Figure  6.  Relationship between maximum capacity Cmax and x

    图  7  氢扩散系数与钒铁添加量x的关系

    Figure  7.  Relationship between diffusion coefficient D and x

    图  8  合金的循环稳定性曲线

    Figure  8.  Cyclic stability curves of alloys

    图  9  合金样品100次循环的容量保持率

    Figure  9.  Discharge capacity retention of the alloys after 100 charge-discharge cycles

    表  1  AB5+xVFe合金的晶胞参数

    Table  1.   Lattice parameters of AB5+xVFe alloy

    x/%t/ha/nmc/nmV/nm3c/a
    原合金0.4921(9)0.4276(5)0.089721(3)0.868(1)
    500.4920(5)0.4275(6)0.089649(1)0.868(1)
    550.4923(1)0.4274(5)0.089717(2)0.868(1)
    5100.4930(1)0.4274(1)0.089965(6)0.866(3)
    5150.4930(5)0.4274(2)0.089984(4)0.866(1)
    5200.5041(1)0.4273(8)0.094054(1)0.847(8)
    1000.4918(9)0.4274(5)0.089567(8)0.869(1)
    1050.4923(2)0.4274(5)0.090089(3)0.868(2)
    10100.4924(2)0.4275(4)0.089760(9)0.868(2)
    10150.4927(7)0.4275(1)0.089899(1)0.867(5)
    10200.5056(2)0.4280(1)0.094761(7)0.868(1)
    1500.4919(5)0.4275(5)0.089610(6)0.869(1)
    1550.4925(6)0.4273(6)0.089793(1)0.867(6)
    15100.4926(1)0.4276(4)0.089866(5)0.868(1)
    15150.4931(1)0.4280(4)0.090133(2)0.868(1)
    15200.5070(1)0.4226(5)0.094086(1)0.833(6)
    下载: 导出CSV

    表  2  AB5+10%VFe球磨15 h的EDS结果

    Table  2.   EDS results of AB5+10%VFe ball-milled 15 h

    元素复合相基体相
    w/%y/%w/%y/%
    La8.953.6628.7611.49
    Ni17.4416.8748.6345.96
    Co3.273.1510.329.71
    Mn4.214.354.214.26
    Al1.172.463.406.98
    V33.5637.40
    Fe28.7629.23
    下载: 导出CSV
  • [1] Chen R R, Chen X Y, Ding X, et al. Effects of Ti/Mn ratio on microstructure and hydrogen storage properties of Ti-V-Mn alloys[J]. Journal of Alloys and Compounds, 2018,748:171−178. doi: 10.1016/j.jallcom.2018.03.154
    [2] Liu Y C, Chabane D, Elkedim O. Intermetallic compounds synthesized by mechanical alloying for solid-state hydrogen storage: A review[J]. Energies, 2021,14(18):5758. doi: 10.3390/en14185758
    [3] Tsukahara M, Takahashi K, Mishima T, et al. V-based solid solution alloys with Laves phase network: Hydrogen absorption properties and microstructure[J]. Journal of Alloys and Compounds, 1996,236:151−155. doi: 10.1016/0925-8388(95)02026-8
    [4] Tsukahara M, Takahashi K, Mishima T, et al. Vanadium-based solid solution alloys with three-dimensional network structure for high capacity metal hydride electrodes[J]. Journal of Alloys and Compounds, 1997,253-254:583−586.
    [5] Sun Chengning, Huang Wei, Zhang Junchao. Preparation and properties of vanadium-based hydrogen storage alloy based on mechanical vibration[J]. Iron Steel Vanadium Titanium, 2020,41(4):65−69. (孙成宁, 黄伟, 张军超. 基于机械振动的钒基储氢汽车电池合金制备及性能研究[J]. 钢铁钒钛, 2020,41(4):65−69.

    Sun Chengning, Huang Wei, Zhang Junchao. Preparation and properties of vanadium-based hydrogen storage alloy based on mechanical vibration [J]. Iron Steel Vanadium Titanium, 2020, 41(4): 65-69.
    [6] Yan Y G, Chen Y H, Wu C L, et al. Low-cost BCC alloy prepared from a FeV80 alloy with a high hydrogen storage capacity[J]. Journal of Power Sources, 2007,164(2):799. doi: 10.1016/j.jpowsour.2006.10.097
    [7] Ulmer U, Asano K, Patyk A, et al. Cost reduction possibilities of vanadium-based solid solutions – Microstructural, thermodynamic, cyclic and environ-mental effects of ferrovanadium substitution[J]. Journal of Alloys and Compounds, 2015,648:1024. doi: 10.1016/j.jallcom.2015.07.110
    [8] Zhu M, Zhu W H, Chung C Y, et al. Microstructure and hydrogen absorption properties of nano-phase composite prepared by mechanical alloying of MmNi5-x(CoAlMn)x and Mg[J]. Journal of Alloys and Compounds, 1999,293-295:531−535. doi: 10.1016/S0925-8388(99)00406-5
    [9] Peng Xianyuan, Liu Baozhong, Fan Yanping, et al. Microstructure and electrochemical characteristics of La0.7Ce0.3Ni4.2Mn0.9-xCu0.37(V0.81Fe0.19)x hydrogen storage alloys[J]. Electrochimica Acta, 2013,99:207−212.
    [10] Tian Xiao, Liu Xiangdong, Xu Jin, et al. Microstructures and electrochemical characteristics of Mm0.3Ml0.7Ni3.55Co0.75Mn0.4Al0.3 hydrogen storage alloys prepared by mechanical alloying[J]. International Journal of Hydrogen Energy, 2009,34(5):2295−2302. doi: 10.1016/j.ijhydene.2008.12.095
    [11] Zhang Z, Elkedim O, Balcerzak M, et al. Structural and electrochemical hydrogen storage properties of MgTiNix (x= 0.1, 0.5, 1, 2) alloys prepared by ball milling[J]. International Journal of Hydrogen Energy, 2016,41(27):11761−11766. doi: 10.1016/j.ijhydene.2015.11.168
    [12] Li X D, Elkedim O, Nowak M. Structural characterization and electrochemical hydrogen storage properties of Ti2−xZrxNi (x= 0, 0.1, 0.2) alloys prepared by mechanical alloying[J]. International Journal of Hydrogen Energy, 2013,38(27):12126−12132. doi: 10.1016/j.ijhydene.2013.03.098
    [13] Simičić M V, Zdujić M, Jelovac D M, et al. Hydrogen storage material based on LaNi5 alloy produced by mechanical alloying[J]. Journal of Power Sources, 2001,92(1-2):250−254. doi: 10.1016/S0378-7753(00)00534-6
    [14] Davidson D J, Sai Raman, Srivastava S S, et al. Investigation on the synthesis, characterization and hydrogenation behaviours of new Mg-based composite materials Mg–x% MmNi4.6Fe0.4 prepared through mechanical alloying[J]. Journal of Alloys and Compounds, 1999,292(1):194−201.
    [15] Tang Ying, Wang Xinhua, Xiao Xuezhang, et al. Microstructure and electrochemical properties of amorphous composites of ball-milled Mg2Ni0.95Sn0.05 + x%Ni[J]. Rare Metal Materials and Engineering, 2006,35(8):1303−1307. (汤滢, 王新华, 肖学章, 等. 机械球磨Mg2Ni0.95Sn0.05+x%Ni非晶复合物的微结构和电化学性能[J]. 稀有金属材料与工程, 2006,35(8):1303−1307. doi: 10.3321/j.issn:1002-185X.2006.08.031

    Tang Ying, Wang Xinhua, Xiao Xuezhang, et al. Microstructure and electrochemical properties of amorphous composites of ball-milled Mg2Ni0.95Sn0.05 + x% Ni [J]. Rare Metal Materials and Engineering, 2006, 35(8): 1303-1307. doi: 10.3321/j.issn:1002-185X.2006.08.031
    [16] Zhao X Y, Ding Y, Yang M, et al. Effect of surface treatment on electrochemical properties of MmNi3.8Co0.75Mn0.4Al0.2 hydrogen storage alloy[J]. International Journal of Hydrogen Energy, 2008,33:81−86.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  206
  • HTML全文浏览量:  35
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-25
  • 刊出日期:  2022-09-14

目录

    /

    返回文章
    返回