Microstructure and electrochemical properties of ball-milled AB5+x%VFe alloys
-
摘要: 采用机械球磨方法制备了MlNi3.55Co0.75Mn0.4Al0.3+x%VFe(质量分数,x=5,10,15,20)储氢合金,研究了合金晶体结构和电化学性能。微结构分析表明,主相AB5晶胞参数a及体积V随球磨时间增加而增加。电化学研究表明,合金的最大容量Cmax及氢扩散系数D随x增加先增加后减少, x=10时达到最大值,分别为310 mAh/g和 7.6×10−11 cm2/s。对合金进行了循环稳定性测试,结果表明,MlNi3.55Co0.75Mn0.4Al0.3+10%VFe球磨10 h的合金在100次循环后放电容量保持率为98%。Abstract: The MlNi3.55Co0.75Mn0.4Al0.3+x%VFe(x=5, 10, 15, 20) composite hydrogen storage alloys were synthesized by mechanical ball-milling. The microstructure and electrochemical properties of the composites were investigated. The microstructure analysis indicates that the parameters a and V of the main phase increase with the increase of milling time. The electrochemical analysis indicates that, with increasing VFe content x, the maximum capacity Cmax and the hydrogen diffusion coefficient D of the alloy first increase and then decrease, and reach the maximum of 310 mAh/g and 7.6×10−11 cm2/s with x=10. The cycle stability test was carried out on the alloy, and the results show that the discharge capacity retention rate of MlNi3.55Co0.75Mn0.4Al0.3+10%VFe ball-milled for 10 h was 98% after 100 cycles.
-
Key words:
- hydrogen storage alloy /
- AB5 alloy /
- 80VFe /
- ball milling /
- electrochemical properties
-
表 1 AB5+xVFe合金的晶胞参数
Table 1. Lattice parameters of AB5+xVFe alloy
x/% t/h a/nm c/nm V/nm3 c/a 原合金 0.4921(9) 0.4276(5) 0.089721(3) 0.868(1) 5 0 0.4920(5) 0.4275(6) 0.089649(1) 0.868(1) 5 5 0.4923(1) 0.4274(5) 0.089717(2) 0.868(1) 5 10 0.4930(1) 0.4274(1) 0.089965(6) 0.866(3) 5 15 0.4930(5) 0.4274(2) 0.089984(4) 0.866(1) 5 20 0.5041(1) 0.4273(8) 0.094054(1) 0.847(8) 10 0 0.4918(9) 0.4274(5) 0.089567(8) 0.869(1) 10 5 0.4923(2) 0.4274(5) 0.090089(3) 0.868(2) 10 10 0.4924(2) 0.4275(4) 0.089760(9) 0.868(2) 10 15 0.4927(7) 0.4275(1) 0.089899(1) 0.867(5) 10 20 0.5056(2) 0.4280(1) 0.094761(7) 0.868(1) 15 0 0.4919(5) 0.4275(5) 0.089610(6) 0.869(1) 15 5 0.4925(6) 0.4273(6) 0.089793(1) 0.867(6) 15 10 0.4926(1) 0.4276(4) 0.089866(5) 0.868(1) 15 15 0.4931(1) 0.4280(4) 0.090133(2) 0.868(1) 15 20 0.5070(1) 0.4226(5) 0.094086(1) 0.833(6) 表 2 AB5+10%VFe球磨15 h的EDS结果
Table 2. EDS results of AB5+10%VFe ball-milled 15 h
元素 复合相 基体相 w/% y/% w/% y/% La 8.95 3.66 28.76 11.49 Ni 17.44 16.87 48.63 45.96 Co 3.27 3.15 10.32 9.71 Mn 4.21 4.35 4.21 4.26 Al 1.17 2.46 3.40 6.98 V 33.56 37.40 Fe 28.76 29.23 -
[1] Chen R R, Chen X Y, Ding X, et al. Effects of Ti/Mn ratio on microstructure and hydrogen storage properties of Ti-V-Mn alloys[J]. Journal of Alloys and Compounds, 2018,748:171−178. doi: 10.1016/j.jallcom.2018.03.154 [2] Liu Y C, Chabane D, Elkedim O. Intermetallic compounds synthesized by mechanical alloying for solid-state hydrogen storage: A review[J]. Energies, 2021,14(18):5758. doi: 10.3390/en14185758 [3] Tsukahara M, Takahashi K, Mishima T, et al. V-based solid solution alloys with Laves phase network: Hydrogen absorption properties and microstructure[J]. Journal of Alloys and Compounds, 1996,236:151−155. doi: 10.1016/0925-8388(95)02026-8 [4] Tsukahara M, Takahashi K, Mishima T, et al. Vanadium-based solid solution alloys with three-dimensional network structure for high capacity metal hydride electrodes[J]. Journal of Alloys and Compounds, 1997,253-254:583−586. [5] Sun Chengning, Huang Wei, Zhang Junchao. Preparation and properties of vanadium-based hydrogen storage alloy based on mechanical vibration[J]. Iron Steel Vanadium Titanium, 2020,41(4):65−69. (孙成宁, 黄伟, 张军超. 基于机械振动的钒基储氢汽车电池合金制备及性能研究[J]. 钢铁钒钛, 2020,41(4):65−69.Sun Chengning, Huang Wei, Zhang Junchao. Preparation and properties of vanadium-based hydrogen storage alloy based on mechanical vibration [J]. Iron Steel Vanadium Titanium, 2020, 41(4): 65-69. [6] Yan Y G, Chen Y H, Wu C L, et al. Low-cost BCC alloy prepared from a FeV80 alloy with a high hydrogen storage capacity[J]. Journal of Power Sources, 2007,164(2):799. doi: 10.1016/j.jpowsour.2006.10.097 [7] Ulmer U, Asano K, Patyk A, et al. Cost reduction possibilities of vanadium-based solid solutions – Microstructural, thermodynamic, cyclic and environ-mental effects of ferrovanadium substitution[J]. Journal of Alloys and Compounds, 2015,648:1024. doi: 10.1016/j.jallcom.2015.07.110 [8] Zhu M, Zhu W H, Chung C Y, et al. Microstructure and hydrogen absorption properties of nano-phase composite prepared by mechanical alloying of MmNi5-x(CoAlMn)x and Mg[J]. Journal of Alloys and Compounds, 1999,293-295:531−535. doi: 10.1016/S0925-8388(99)00406-5 [9] Peng Xianyuan, Liu Baozhong, Fan Yanping, et al. Microstructure and electrochemical characteristics of La0.7Ce0.3Ni4.2Mn0.9-xCu0.37(V0.81Fe0.19)x hydrogen storage alloys[J]. Electrochimica Acta, 2013,99:207−212. [10] Tian Xiao, Liu Xiangdong, Xu Jin, et al. Microstructures and electrochemical characteristics of Mm0.3Ml0.7Ni3.55Co0.75Mn0.4Al0.3 hydrogen storage alloys prepared by mechanical alloying[J]. International Journal of Hydrogen Energy, 2009,34(5):2295−2302. doi: 10.1016/j.ijhydene.2008.12.095 [11] Zhang Z, Elkedim O, Balcerzak M, et al. Structural and electrochemical hydrogen storage properties of MgTiNix (x= 0.1, 0.5, 1, 2) alloys prepared by ball milling[J]. International Journal of Hydrogen Energy, 2016,41(27):11761−11766. doi: 10.1016/j.ijhydene.2015.11.168 [12] Li X D, Elkedim O, Nowak M. Structural characterization and electrochemical hydrogen storage properties of Ti2−xZrxNi (x= 0, 0.1, 0.2) alloys prepared by mechanical alloying[J]. International Journal of Hydrogen Energy, 2013,38(27):12126−12132. doi: 10.1016/j.ijhydene.2013.03.098 [13] Simičić M V, Zdujić M, Jelovac D M, et al. Hydrogen storage material based on LaNi5 alloy produced by mechanical alloying[J]. Journal of Power Sources, 2001,92(1-2):250−254. doi: 10.1016/S0378-7753(00)00534-6 [14] Davidson D J, Sai Raman, Srivastava S S, et al. Investigation on the synthesis, characterization and hydrogenation behaviours of new Mg-based composite materials Mg–x% MmNi4.6Fe0.4 prepared through mechanical alloying[J]. Journal of Alloys and Compounds, 1999,292(1):194−201. [15] Tang Ying, Wang Xinhua, Xiao Xuezhang, et al. Microstructure and electrochemical properties of amorphous composites of ball-milled Mg2Ni0.95Sn0.05 + x%Ni[J]. Rare Metal Materials and Engineering, 2006,35(8):1303−1307. (汤滢, 王新华, 肖学章, 等. 机械球磨Mg2Ni0.95Sn0.05+x%Ni非晶复合物的微结构和电化学性能[J]. 稀有金属材料与工程, 2006,35(8):1303−1307. doi: 10.3321/j.issn:1002-185X.2006.08.031Tang Ying, Wang Xinhua, Xiao Xuezhang, et al. Microstructure and electrochemical properties of amorphous composites of ball-milled Mg2Ni0.95Sn0.05 + x% Ni [J]. Rare Metal Materials and Engineering, 2006, 35(8): 1303-1307. doi: 10.3321/j.issn:1002-185X.2006.08.031 [16] Zhao X Y, Ding Y, Yang M, et al. Effect of surface treatment on electrochemical properties of MmNi3.8Co0.75Mn0.4Al0.2 hydrogen storage alloy[J]. International Journal of Hydrogen Energy, 2008,33:81−86.