留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

镍基高温合金感应锭浇注过程的数值模拟研究

唐平梅 周扬 姜东滨

唐平梅, 周扬, 姜东滨. 镍基高温合金感应锭浇注过程的数值模拟研究[J]. 钢铁钒钛, 2022, 43(4): 127-133, 141. doi: 10.7513/j.issn.1004-7638.2022.04.020
引用本文: 唐平梅, 周扬, 姜东滨. 镍基高温合金感应锭浇注过程的数值模拟研究[J]. 钢铁钒钛, 2022, 43(4): 127-133, 141. doi: 10.7513/j.issn.1004-7638.2022.04.020
Tang Pingmei, Zhou Yang, Jiang Dongbin. Numerical simulation on pouring process of nickel base superalloy induction ingot[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(4): 127-133, 141. doi: 10.7513/j.issn.1004-7638.2022.04.020
Citation: Tang Pingmei, Zhou Yang, Jiang Dongbin. Numerical simulation on pouring process of nickel base superalloy induction ingot[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(4): 127-133, 141. doi: 10.7513/j.issn.1004-7638.2022.04.020

镍基高温合金感应锭浇注过程的数值模拟研究

doi: 10.7513/j.issn.1004-7638.2022.04.020
详细信息
    作者简介:

    唐平梅(1991—),女,四川绵竹人,博士,工程师,主要研究方向为高温合金冶炼,E-mail:Tpingmei@163.com

  • 中图分类号: TF775,TF133

Numerical simulation on pouring process of nickel base superalloy induction ingot

  • 摘要: 利用ProCAST软件对镍基高温合金感应锭的浇注过程进行了数值模拟研究,分析了铸锭充型与凝固过程温度场、固相率等的变化特征及其对铸锭缩孔的影响,探讨了铸锭缩孔缩松随浇注温度的变化规律。结果表明,镍基高温合金感应锭凝固过程中,在铸锭纵向方向上,铸锭上部合金温度低,下部合金温度高,铸锭未实现从底部到顶部(浇口)的顺序凝固,铸锭端部的“V”形一次缩孔较深。在充型阶段,浇注温度的变化对合金流动的最大速度及合金液面波动的影响较小;在凝固阶段,降低浇注温度减小了铸锭下部的高温区域,能在一定程度上减小铸锭端部的一次缩孔深度,但由于其未能使铸锭在纵向方向上实现顺序凝固,因此降低浇注温度并不能显著减小铸锭端部的一次缩孔深度。另外,浇注温度的变化对铸锭内部缩松的影响较小。
  • 图  1  镍合金主要热物性参数随温度的变化

    (a) 密度;导热系数;(b) 热焓

    Figure  1.  The change of main thermophysical parameters of nickel superalloy with temperature

    图  2  几何模型示意

    Figure  2.  The schematic diagram of geometric model

    图  3  充型与凝固过程不同时刻合金与锭模的温度分布

    Figure  3.  The temperature distribution of alloy and mold at different times during filling and solidification process

    图  4  顺序凝固示意

    Figure  4.  Schematic diagram of sequential solidification

    图  5  充型与凝固过程不同时刻合金的固相率

    Figure  5.  The solid fraction of alloy at different times during filling and solidification process

    图  6  镍基高温合金感应锭的缩孔缩松[12]

    Figure  6.  The shrinkage porosity of nickel base superalloy induction ingot

    图  7  合金填充率达到55%时,不同浇注温度下合金的速度分布云图

    Figure  7.  The contour of alloy velocity distribution under different pouring temperature as filling rate reaches 55%

    图  8  不同浇注温度下合金凝固时(t=2657 s)的温度分布及固相率

    Figure  8.  Temperature distribution and solid fraction of alloy during solidification process (t=2 657 s) under different pouring temperature

    图  9  铸锭纵向方向上监测点的示意

    Figure  9.  Schematic diagram of monitoring points along the longitudinal direction of ingot

    图  10  不同浇注温度下各监测点的温度随时间变化曲线

    Figure  10.  The curve of temperature versus time of monitoring points under different pouring temperature

    图  11  不同浇注温度下的Niyama值

    Figure  11.  The Niyama value at different pouring temperature

    表  1  镍合金的主要化学成分

    Table  1.   Main chemical composition of nickel alloys %

    AlCCrFeMoNbTiNi
    0.50.0218.318.9350.97余量
    下载: 导出CSV

    表  2  模拟采用的主要工艺参数

    Table  2.   The main process parameters used in the simulation

    浇注温度/℃入口直径/mm入口速度/(kg·s−1)
    1400, 1450, 1500271.96
    下载: 导出CSV
  • [1] 郭建亭. 高温合金材料学(高温合金材料与工程应用) [M]. 北京: 科学出版社, 2010.

    Guo Jianting. Materials science and engineering for superalloy (Superalloy materials and engineering applications)[M]. Beijing: Science Press, 2010.
    [2] Geng L, Na Y S, Park N K. Oxidation behavior of alloy 718 at a high temperature[J]. Materials & Design, 2007,28(3):978−981.
    [3] Jiang Shichuan, Zhang Jian, He Yunhua, et al. Microstructure evolution and processing maps of GH4169 during deformation[J]. Iron Steel Vanadium Titanium, 2021,42(2):161−166. (蒋世川, 张健, 何云华, 等. GH4169 合金高温变形显微组织演变及热加工图[J]. 钢铁钒钛, 2021,42(2):161−166.

    Jiang Shichuan, Zhang Jian, He Yunhua, et al. Microstructure evolution and processing maps of GH4169 during deformation [J]. Iron Steel Vanadium Titanium, 2021, 42(02): 161-166.
    [4] 段生朝. 电渣重熔大型IN718镍基合金铸锭合金元素氧化控制的基础研究[D]. 北京: 北京科技大学, 2020.

    Duan Shengchao. Fundamental study on the controlling loss of alloying elements of large IN718 electroslag remelting ingots[D]. Beijing: University of Science and Technology Beijing, 2020.
    [5] Mitchell A. Recent developments in specialty melting processes[J]. Materials Technology, 1994,9(9-10):201−206. doi: 10.1080/10667857.1994.11785070
    [6] 石骁. 电渣重熔大型IN718镍基合金铸锭凝固和偏析行为基础研究[D]. 北京: 北京科技大学, 2019.

    Shi Xiao. Fundamental study on the solidification and segregation behavior of large-sized as-cast IN718 electroslag remelting ingots[D]. Beijing: University of Science and Technology Beijing, 2019.
    [7] 凌云. 多力场作用下铸件凝固过程基于动态压强的缩孔预测方法及应用[D]. 武汉: 华中科技大学, 2017.

    Ling Yun. A dynamic pressure-based method to predict casting shrinkage cavities during solidification process under multi-force fields and its application[D]. Wuhan: Huazhong University of Science & Technology, 2017.
    [8] Hardin R A, Beckermann C. Effect of porosity on deformation, damage, and fracture of cast steel[J]. Metallurgical and Materials Transactions A, 2013,44(12):5316−5332. doi: 10.1007/s11661-013-1669-z
    [9] Liu Keli, Wang Junsheng, Guo Yuelin, et al. Research progress on numerical simulation and control methods of hole defects in nickel base single crystal superalloy[J]. Aeronautical Manufacturing Technology, 2020,63(16):75−85. (刘可立, 王俊升, 郭跃岭, 等. 镍基单晶高温合金孔洞缺陷数值模拟与控制方法研究进展[J]. 航空制造技术, 2020,63(16):75−85.

    Liu Like, Wang Junsheng, Guo Yuelin, et al. Research progress on numerical simulation and control methods of hole defects in nickel base single crystal superalloy[J]. Aeronautical Manufacturing Technology, 2020, 63(16): 75-85.
    [10] Li Chao, Liu Jia, Yu Ang, et al. Study of vacuum induction melting process for superalloy[J]. Vacuum, 2016,53(2):37−41. (李超, 刘佳, 于昂, 等. 铸造高温合金真空感应熔炼过程的研究[J]. 真空, 2016,53(2):37−41.

    Li Chao, Liu Jia, Yu Ang, et al. Study of vacuum induction melting process for superalloy[J]. Vacuum, 2016, 53(02): 37-41.
    [11] Cheng Jianqiang, Hu Xianjun, Gu Hua, et al. Application of exothermic insulated riser in superalloy vacuum casting[J]. Foundry Technology, 2016,37(1):110−113. (成建强, 胡显军, 顾晔, 等. 发热保温冒口在高温合金真空浇注中的应用[J]. 铸造技术, 2016,37(1):110−113.

    Cheng Jianqiang, Hu Xianjun, Gu Hua, et al. Application of exothermic insulated riser in superalloy vacuum casting[J]. Foundry Technology, 2016, 37(01): 110-113.
    [12] 王建武, 徐志强, 杨树峰. 热顶设计对镍基高温合金铸锭收缩孔隙的影响[J/OL]. 中国冶金: 1-9[2022-04-24]

    Wang Jianwu, Xu Zhiqiang, Yang Shufeng, et al. Effect of hot top design on the shrinkage porosity of nickel-based superalloy ingots[J/OL]. China Metallurgy, 1-9[2022-04-24].
    [13] Zhou Jianxin. Current status and development trend of casting numerical simulation technology[J]. Foundry, 2012,61(10):1105−1115. (周建新. 铸造计算机模拟仿真技术现状及发展趋势[J]. 铸造, 2012,61(10):1105−1115. doi: 10.3969/j.issn.1001-4977.2012.10.001

    Zhou Jianxin. Current status and development trend of casting numerical simulation technology[J]. Foundry, 2012, 61(10): 1105-1115. doi: 10.3969/j.issn.1001-4977.2012.10.001
    [14] Khalajzadeh V, Beckermann C. Simulation of shrinkage porosity formation during alloy solidification[J]. Metallurgical and Materials Transactions A, 2020,51(5):2239−2254. doi: 10.1007/s11661-020-05699-z
    [15] 陈峥. 大铸锭凝固过程的模拟研究[D]. 上海: 上海大学, 2019.

    Chen Zheng. Simulation research on the heavy ingot solidification process[D]. Shanghai: Shanghai University, 2019.
    [16] Zhang Minhua, Qu Yinhu, Liang Tao. Simulation of filling and solidification processes of faucet cover by procast[J]. Foundry Technology, 2015,36(4):1055−1062. (张敏华, 屈银虎, 梁涛. ProCAST 在水龙头罩铸造模拟过程中的应用[J]. 铸造技术, 2015,36(4):1055−1062.

    Zhang Minhua, Qu Yinhu, Liang Tao, Simulation of filling and solidification processes of faucet cover by procast[J]. Foundry Technology, 2015, 36(04): 1055-1062
    [17] 李庆春. 铸件形成理论基础[M]. 北京: 机械工业出版社, 1982.

    Li Qingchun. Theoretical basis of casting formation[M]. Beijing: China Machine Press, 1982.
    [18] 郭建亭. 髙温合金材料学(应用基础理论) [M]. 北京, 科学出版社, 2008.

    Guo Jianting. Materials science and engineering for superalloy (application basic theory)[M]. Beijing, Science Press, 2008.
    [19] Wang Jiaqi, Fu Paixian, Liu Hongwei, et al. Shrinkage porosity criteria and optimized design of a 100-ton 30Cr2Ni4MoV forging ingot[J]. Materials and Design, 2012,35:446−456. doi: 10.1016/j.matdes.2011.09.056
    [20] Carlson K D, Beckermann C. Prediction of shrinkage pore volume fraction using a dimensionless Niyama criterion[J]. Metallurgical and Materials Transactions A, 2009,40(1):163−175. doi: 10.1007/s11661-008-9715-y
    [21] Riedler M, Michelic S. Bernhard C. Formation of shrinkage porosity during solidification of steel: Numerical simulation and experimental validation[C]//IOP Conference Series: Materials Science and Engineering. IOP Publishing, 2016, 143(1): 012035.
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  181
  • HTML全文浏览量:  13
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-06
  • 刊出日期:  2022-09-14

目录

    /

    返回文章
    返回