Study on preparation of high-quality ultrafine TiB2 powder by short process melting method
-
摘要: 基于企业生产研究背景与市场竞争优势,提出一种固液结合的短流程二硼化钛高端超细粉体的制备方法,利用廉价的钛源(二氧化钛)、硼源,无危险还原剂,采用短流程、低成本的方案制备出高产量、较短生产周期且无环境污染,具有一定工业推广性的固液结合的高端超细粉体--二硼化钛。研究了钛源、硼源的选择问题、熔融盐的比例问题、高端粉体的合成温度、Ti/B摩尔比、保温时间对TiB2粉体合成的影响。通过XRD和SEM对粉体的物相组成、显微形貌进行了表征。研究结果表明: 当选择摩尔比为1∶1 NaCl-KCl混合盐的情况下,反应物以TiO2/B为3∶10(摩尔比)配比,700 ℃保温2 h时开始有TiB2生成,随温度升高,产物中目标产物的纯度逐步提高,保温温度需达到950 ℃才可得到纯净的目标产物,无其余副产物生成,形貌为立方状,棱角分明,粒径为150 nm左右。若改变保温时长,当保温时长为5 h,900 ℃即可得到纯净的目标产物。Abstract: Based on research background and market competitive advantage of the enterprise production, a method of preparing high-quality ultrafine TiB2 powder with short process by melting method was proposed in this paper. This method is high yield, short production cycle and no environmental pollution, by which advanced ultrafine TiB2 powder with certain industrial extensibility was prepared using cheap titanium source, boron(B) source and nonhazardous reducing agent with short process and low cost. The effects of the selection of titanium and B sources, the proportion of molten salt, the synthesis temperature of high-quality powder, Ti/B molar ratio and holding time on the synthesis of TiB2 powder were studied. The phase composition and microstructure of the powder were characterized by XRD and SEM. The results show that when the molar ratio of NaCl/KCl mixed salt is 1∶1 and the molar ratio of TiO2/B is 3∶10, TiB2 begins to form when the reactant is kept at 700 ℃ for 2 h. With the increase of temperature, the purity of the target product in the product gradually improves. The pure target product can be obtained only when the holding temperature reaches 950 ℃ without other by-products. The morphology of powder is cubic, sharp edges and corners. The particle size is about 150 nm. If the holding time is changed, the pure target product can be obtained at 900 ℃ with 5 h of holding time.
-
Key words:
- superfine TiB2 powder /
- melting method /
- TiO2 /
- boron powder
-
表 1 常见熔盐组成及性质
Table 1. Compositions and properties of common molten salts
熔盐 熔点/℃ 沸点/℃ 密度/(g·cm−3) NaCl 801 1407 1.55 KCl 770 1413 1.56 CaCl2 775 1935 2.15 NaCl-KCl 657 1.61 NaCl-CaCl2 504 Na2SO4 884 1404 2.68 表 2 试验所需试剂
Table 2. Reagents required for experiment
名称 化学式 纯度 特性 二氧化钛 TiO2 分析纯 粉体 硼粉 B 分析纯 粉体 无水乙醇 C2H5OH 分析纯 液体 氯化钠 NaCl 分析纯 固体颗粒 氯化钾 KCl 分析纯 固体颗粒 -
[1] 期刊编辑部. 二硼化钛(TiB2)—一种新型的极具开发应用前景的陶瓷原料[J]. 粉末冶金技术, 1995(1): 75.Editorial Office of PMT. Titanium diboride (TiB2) —a new ceramic raw material with great development and application prospects [J] Powder Metallurgy Technology, 1995 (1): 75. [2] Cheng Xingzhi. Development and application of titanium diboride[J]. Liaoning Chemical Industry, 1988,(1):3−6, 67. (程兴治. 二硼化钛的研制及应用[J]. 辽宁化工, 1988,(1):3−6, 67. [3] Cui Zhenghao, Li Zongjia, Cheng Huanwu, et al. Research progress and prospect of titanium diboride ceramics[J]. Ceramics, 2021,(9):12−18. (崔正浩, 李宗家, 程焕武, 等. 二硼化钛陶瓷研究进展及展望[J]. 陶瓷, 2021,(9):12−18. doi: 10.3969/j.issn.1002-2872.2021.09.002 [4] 杨大驰, 郑世政. 核壳结构的二硼化钛表面包覆功能膜材料及其制备方法与应用: 中国, CN109876869A[P]. 2019-01-26.Yang Dachi, Zheng Shizheng. Core shell structure titanium diboride surface coating functional film material and its preparation method and application: China, CN109876869A[P]. 2019-01-26 [5] Wang Haibo, Wang Dongpo, Cheng Fangjie, et al. Effect of process conditions on the synthesis of TiB2/TiC nanocomposite powders by mechanical alloying[J]. Rare Metal Materials & Engineering, 2015,44(12):2987−2991. [6] Yin Shuya, Li Song, Li Jiahua, et al. Action mechanism and sintering process progress of titanium diboride bulletproof ceramics[J]. China Ceramic Industry, 2021,28(5):5. (殷姝雅, 李松, 李家华, 等. 二硼化钛防弹陶瓷的作用机理与烧结工艺进展[J]. 中国陶瓷工业, 2021,28(5):5. doi: 10.13958/j.cnki.ztcg.2021.05.002 [7] 何海平, 詹世英, 张正, 等. 二硼化钛包覆的硅碳材料及其制备方法和应用: 中国, CN112635729A[P]. 2021-04-09.He Haiping, Zhan Shiying, Zhang Zheng, et al. Titanium diboride coated silicon carbon material and its preparation method and application: China, CN112635729A[P]. 2021-04-09. [8] Huang Anqi, Zhu Shizhen, Liu Ling, et al. Effect of TiB2 addition on microstructure and mechanical properties of SiC based multiphase ceramics[J]. Journal of Silicate, 2017,45(7):7. (黄安琪, 朱时珍, 刘玲, 等. 添加TiB2对SiC基复相陶瓷显微结构和力学性能的影响[J]. 硅酸盐学报, 2017,45(7):7. [9] Cui H, Chen Z, Xiao G, et al. Mechanical properties and microstructures of Al2O3/TiC/TiB2 ceramic tool material[J]. Crystals, 2021,11(6):637. doi: 10.3390/cryst11060637 [10] Dey D, Bhowmik A, Biswas A. Effect of titanium diboride on friction and wear properties of Al2024 TiB2 non in situ composites[J]. Chinese Journal of Nonferrous Metals (English Edition), 2021,31(5):1249−1261. (Dey D, Bhowmik A, Biswas A. 二硼化钛对Al2024 TiB2非原位复合材料摩擦磨损性能的影响[J]. 中国有色金属学报(英文版), 2021,31(5):1249−1261. [11] Li Junshou, Zhao Fang, Li Su, et al. Effect of combustion agent on crystal morphology of titanium diboride[J]. Rare Metal Materials and Engineering, 2015,(S1):4. (李俊寿, 赵芳, 李苏, 等. 燃烧剂对二硼化钛晶体形态的影响[J]. 稀有金属材料与工程, 2015,(S1):4. [12] Meng Jialin, Guo Xianglong, Lv Weijie, et al. Microstructure and residual stress of in-situ synthesized (TiC+TiB)/Ti composites[J]. Materials for Mechanical Engineering, 2017,41(10):15−19. (孟嘉琳, 郭相龙, 吕维洁, 等. 原位合成(TiC+TiB)/Ti复合材料的微观结构和残余应力研究[J]. 机械工程材料, 2017,41(10):15−19. doi: 10.11973/jxgccl201710004 [13] Wang Zhutang. Panzhihua Steel sponge titanium branch mass produces super soft sponge titanium[J]. Light Metal, 2019,(6):10. (王祝堂. 攀钢海绵钛分公司批量生产超软海绵钛[J]. 轻金属, 2019,(6):10. [14] Yang Zhaojun, Wang Fengyu, Luo Rongfei, et al. Magnetic separation and enrichment method of Panxi ultrafine vanadium titanium magnetite[J]. Iron Steel Vanadium Titanium, 2021,42(2):7. (杨招君, 王丰雨, 罗荣飞, 等. 攀西超细粒级钒钛磁铁矿磁选富集方法[J]. 钢铁钒钛, 2021,42(2):7. [15] 唐永炳, 徐梦琦, 杨扬, 等. 一种二硼化钛/碳化硼复合电极及其制备方法与应用: 中国, CN11304689A[P]. 2020-06-19.Tang Yongbing, Xu Mengqi, Yang Yang, et al. A titanium diboride / boron carbide composite electrode and its preparation method and application: China, CN11304689A[P]. 2020-06-19.