Study on impurity removal process of titanium tetrachloride produced by boiling chlorination
-
摘要: 沸腾氯化因具有生产效率高、成本低、环境污染小、自动化程度高等优点,已成为四氯化钛生产的主流方式。结合双瑞万基钛业公司研究实际,主要讨论了沸腾氯化生产四氯化钛过程中除铝、除钒以及除去四氯化钛中固体颗粒杂质的工艺及研究进展,认为采用氯化炉多级旋风分离系统、离心分离系统及真空搅拌蒸发系统除去四氯化钛中固体颗粒杂质,有机物除钒,配合精四氯化钛中氧碳杂质在线检测技术精准除铝等多项技术措施并用,可以满足高品质四氯化钛的制备需求。并认为有机物除钒和四氯化钛中固体颗粒物绿色环保回收技术将成为四氯化钛制备的主流工艺。Abstract: Boiling chlorination has become the mainstream production method of tetrachloride production due to its advantages of high production efficiency, low cost, little environmental pollution and high automation. Combined with the research practice in Sunrui Wanji titanium industry company, this paper mainly discussed the process of removing aluminum, vanadium and solid impurities in titanium tetrachloride during the process of boiling chlorination production. By combining the on-line detection technology of oxygen and carbon impurities in refined titanium tetrachloride to accurately remove aluminum, we independently developed and designed a chlorination furnace multi-cyclone separation system, titanium tetrachloride centrifugal separation system and vacuum stirring evaporation system to remove the solid particle impurities in titanium tetrachloride, which can meet the requirements of high-quality titanium tetrachloride preparation. And it is believed that the vanadium removal by organic matter and the environmentally friendly recycling technology of solid particles in titanium tetrachloride will become the mainstream production technologies of titanium tetrachloride industry.
-
Key words:
- titanium tetrachloride /
- boiling chloride /
- impurity removal process
-
表 1 国内外四氯化钛除AlCl3工艺对比
Table 1. Comparison of AlCl3 removal processes from titanium tetrachloride at home and abroad
序号 除AlCl3技术 优点 缺点 1 在粗四氯化钛中加H2O 成本低 H2O加入量比AlCl3理论所需量高10%以上,导致钛损失 2 粗四氯化钛中加90%H2O和10%NaOH溶液 成本低 需增加设备,并在连续生产中控制加入量,容易造成钛损失 3 在粗四氯化钛中加入NaCl(粒度30~400 μm)和H2O,进行适度搅拌,加热到136 ℃左右,形成不溶性的含铝固体化合物被沉降分离除去 减少Ti损失,保持FeCl3的可利用价值,减少HCl产生量 需增加设备,很难解决根据AlCl3含量等比例加入NaCl和H2O的问题,同时NaCl和H2O相互间的比例也是一个问题,AlCl3与(NaCl+H2O)化合速度比较慢,NaCl质量要求比较高 4 气态粗四氯化钛加入NaCl NaCl与AlCl3和FeCl3都要反应生成固体化合物被收集,同时,过量的石油焦粉尘也可以被分离出来 NaCl消耗量比较大,FeCl3不能作为净水剂利用 5 在氯化炉或第一个收尘器内
加入NaCl固体工艺简单,形成挥发度相对的(NaAlCl4)化合物,很容易通过冷凝收尘器被除去。该种方法在高温下,AlCl3和NaCl化合速度很快 床层温度要求850~1100 ℃,可加重
氯化炉内衬侵蚀,或炉内高温烧结 -
[1] 莫畏, 邓国珠, 罗方承. 钛冶金[M]. 北京: 冶金工业出版社, 2007.Mo Wei , Deng Guozhu , Luo Fangcheng . Titanium metallurgy [M]. Beijing: Metallurgical Industry Press, 2007. [2] Chen Hui. Technology of producing titanium tetrachloride by boiling chlorination[J]. Modern Mechanical, 2010,(5):68−70. (陈辉. 沸腾氯化生产四氯化钛工艺技术[J]. 现代机械, 2010,(5):68−70. doi: 10.3969/j.issn.1002-6886.2010.05.026 [3] Li Liang, Liu Dachun, Li Kaihua, et al. Experimental study on static settlement separation of solid impurities in crude titanium tetrachloride[J]. Light Metals, 2017,(9):40−43. (李亮, 刘大春, 李开华, 等. 粗四氯化钛中固相杂质静置沉降分离试验研究[J]. 轻金属, 2017,(9):40−43. [4] Zhao Haitao. Comprehensive utilization of solid waste in the production of titanium tetrachloride by boiling chlorination[J]. Nonferrous Metal Engineering, 2015,5(1):94−96. (赵海涛. 沸腾氯化法四氯化钛生产中固体废物的综合利用[J]. 有色金属工程, 2015,5(1):94−96. doi: 10.3969/j.issn.2095-1744.2015.01.022 [5] Li Zhiwen, Jiang Baowei, Zhu Weiping, et al. Production practice of boiling chlorination and refining technology in USA[J]. Nonferrous Metallurgy, 2014,(1):33−36. (李志文, 姜宝伟, 朱卫平, 等. 美国沸腾氯化与精制技术的生产实践[J]. 有色冶金, 2014,(1):33−36. [6] Xu Weichun, Dai Yingjie, Wei Zhizhong, et al. Development and application instances of vacuum stirring evaporation technology of titanium tetrachloride slurry[J]. Iron Steel Vanadium Titanium, 2022,43(2):81−86. (许伟春, 代应杰, 魏治中, 等. 四氯化钛泥浆真空搅拌蒸发技术与应用[J]. 钢铁钒钛, 2022,43(2):81−86. doi: 10.7513/j.issn.1004-7638.2022.02.013 [7] Shi Yuying, Zhou Yunying, Chen Yingzhi, et al. Sources and hazards of aluminum chloride in titanium tetrachloride[J]. Sichuan Metallurgy, 2015,37(2):20−33. (石玉英, 周云英, 陈映志, 等. 四氯化钛中三氯化铝的来源及其危害[J]. 四川冶金, 2015,37(2):20−33. doi: 10.3969/j.issn.1001-5108.2015.02.006 [8] Wang Lijuan, Liu Zhenghong, Li Yi, et al. Research on on-line detection technology of oxygen and carbon impurities in refined titanium tetrachloride[J]. Titanium Industry Progress, 2022,39(1):32−35. (王丽娟, 刘正红, 李仪, 等. 精四氯化钛中氧碳杂质在线检测技术研究[J]. 钛工业进展, 2022,39(1):32−35. doi: 10.13567/j.cnki.issn1009-9964.2022.01.007 [9] Li Yajun, Sun Humin, Xu Weichun. Current status and development trend of vanadium removal process by crude titanium tetrachloride[J]. Modern Chemical Industry, 2007,27(6):24−26. (李亚军, 孙虎民, 许伟春. 粗四氯化钛除钒工艺现状及发展趋势[J]. 现代化工, 2007,27(6):24−26. doi: 10.3321/j.issn:0253-4320.2007.06.006 [10] An Menghua, Wang Xin, Wang Yafeng. The impurity removal method of crude titanium tetrachloride by alkaline solution[J]. Henan Science and Technology, 2015,571(9):101−103. (安孟华, 王新, 王亚锋. 利用碱液实现粗四氯化钛除杂的方法[J]. 河南科技, 2015,571(9):101−103. doi: 10.3969/j.issn.1003-5168.2015.17.037 [11] Hu Yuanjin. Comparison of crude titanium tetrachloride aluminum powder and organic vanadium removal process[J]. Henan Science and Technology, 2016,(8):126−128. (胡元金. 粗四氯化钛铝粉除钒和有机物除钒工艺比较[J]. 河南科技, 2016,(8):126−128. doi: 10.3969/j.issn.1003-5168.2016.15.052
计量
- 文章访问数: 283
- HTML全文浏览量: 20
- PDF下载量: 38
- 被引次数: 0