留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

VN基材料的电子结构调控和超电容性能研究

张东彬 常智 滕艾均 刘天豪 代宇 彭显著 杜光超 康举

张东彬, 常智, 滕艾均, 刘天豪, 代宇, 彭显著, 杜光超, 康举. VN基材料的电子结构调控和超电容性能研究[J]. 钢铁钒钛, 2022, 43(5): 45-51. doi: 10.7513/j.issn.1004-7638.2022.05.007
引用本文: 张东彬, 常智, 滕艾均, 刘天豪, 代宇, 彭显著, 杜光超, 康举. VN基材料的电子结构调控和超电容性能研究[J]. 钢铁钒钛, 2022, 43(5): 45-51. doi: 10.7513/j.issn.1004-7638.2022.05.007
Zhang Dongbin, Chang Zhi, Teng Aijun, Liu Tianhao, Dai Yu, Peng Xianzhu, Du Guangchao, Kang Ju. Regulation on electronic structure of VN-based materials for enhanced supercapacitor performances[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(5): 45-51. doi: 10.7513/j.issn.1004-7638.2022.05.007
Citation: Zhang Dongbin, Chang Zhi, Teng Aijun, Liu Tianhao, Dai Yu, Peng Xianzhu, Du Guangchao, Kang Ju. Regulation on electronic structure of VN-based materials for enhanced supercapacitor performances[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(5): 45-51. doi: 10.7513/j.issn.1004-7638.2022.05.007

VN基材料的电子结构调控和超电容性能研究

doi: 10.7513/j.issn.1004-7638.2022.05.007
基金项目: 深水油气管线关键技术与装备北京市重点实验室开发课题资助项目(BIPT2020003)。
详细信息
    作者简介:

    张东彬,1990年出生,男,汉族,福建东山人,博士研究生,工程师,研究方向:新型储能器件关键技术开发与研究, E-mail: dongbin10010619@163.com

    通讯作者:

    滕艾均,1989年出生,男,汉族,河北沧州人,博士研究生,工程师,研究方向:冶金全流程、钒钛新材料及资源综合利用,E-mail: wdtaj2008@163.com

  • 中图分类号: TF841.3

Regulation on electronic structure of VN-based materials for enhanced supercapacitor performances

  • 摘要: 从改变VN材料固有本征特性的角度出发,提出了一种利用电子结构调控来改善VN材料电化学性能的方法。通过利用Fe元素的掺杂,调控材料的电子结构状态,达到调控其电化学性能的目的;通过XRD、HRTEM、XPS等方法表征Fe元素掺杂前后对VN基材料微观形貌和电子结构的影响;结合DFT计算结果表明:Fe元素的电子调控改变了VN材料的电子/离子输运能力,使得所制备的Fe-VN材料表现出优异的超电容性能;当电流密度为1 A/g时,其比容量为343.75 F/g,同时,经过1000次循环充放电后,仍能保持85%的初始容量。
  • 图  1  VN(a)与Fe-VN(b)的晶体结构模型,XRD(c)和Raman(d)表征

    Figure  1.  The crystal structure of (a) VN and (b) Fe-VN. (c) XRD and (d) Raman spectra

    图  2  VN(a)与Fe-VN(b)的HRTEM表征及Fe-VN的EDS(c)和Mapping(d)表征

    Figure  2.  The HRTEM images of (a) V and (b) Fe-VN. (c) EDS and (d) mapping of Fe-VN

    图  3  VN与Fe-VN的电化学性能测试

    (a) CV; (b) GCD; (c) EIS; (d) 循环寿命

    Figure  3.  The electrochemical performances of VN and Fe-VN

    图  4  VN与Fe-VN的XPS表征及分峰拟合

    (a) 全谱曲线; (b) Fe 2p; (c) V 2p; (d) N 2p

    Figure  4.  The XPS spectra of VN and Fe-VN

    图  5  Fe-VN(a, c)和VN(b, d)的差分电荷密度分布对比及相应晶体结构

    Figure  5.  The differential charge density distribution and crystal structures of (a, c) Fe-VN and (b, d) VN

    图  6  VN和Fe-VN的接触角性能测试及(200)晶面对OH的吸附能计算

    Figure  6.  (a) Contact angle tests and (b, c) adsorption energy of (200) lattice plane of VN and Fe-VN

    表  1  VN和Fe-VN的(200)晶面对OH的吸附能

    Table  1.   The adsorption energy of (200) lattice plane for OH

    材料吸附能/eV
    (200)+OH(200)OHEads
    Fe-VN−16083.98−15620.10−447.78−15.12
    VN−18262.59−17801.28−447.78−13.53
    下载: 导出CSV
  • [1] Bonaccorso Francesco, Colombo Luigi, Yu Guihua, et al. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage[J]. Science, 2015,347:1246501. doi: 10.1126/science.1246501
    [2] Patrice Simon, Yuri Gogotsi. Materials for electrochemical capacitors[J]. Nature Material, 2008,7:845−854.
    [3] Zhang Dongbin, Shao Yuan, Kong Xianggui, et al. Facile fabrication of large-area hybrid Ni-Co hydroxide/Cu(OH)2/copper foam composites[J]. Electrochimica Acta, 2016,218:294−302. doi: 10.1016/j.electacta.2016.09.137
    [4] Yin Xianglu, Zeng Zehua, Gao Rongrong, et al. Thermolysis preparation of monoclinic phase vanadium dioxide with ultrafine particles under an inert gas atmosphere[J]. Iron Steel Vanadium Titanium, 2022,43(1):1−6. (尹翔鹭, 曾泽华, 高荣荣, 等. 惰性气氛下热分解法制备M相二氧化钒超细颗粒[J]. 钢铁钒钛, 2022,43(1):1−6. doi: 10.7513/j.issn.1004-7638.2022.01.001
    [5] Liu Bo, Peng Sui, Chen Yong, et al. Effect of chemical precipitation process on particle size of VO precursor and its hydrothermal crystallization[J]. Iron Steel Vanadium Titanium, 2020,41(5):58−65. (刘波, 彭穗, 陈勇, 等. 化学沉淀过程对VO2前驱体粒径的影响及其水热晶化的研究[J]. 钢铁钒钛, 2020,41(5):58−65. doi: 10.7513/j.issn.1004-7638.2020.05.010
    [6] Wu Changzheng, Xie Yi. Promising vanadium oxide and hydroxide nanostructures: from energy storage to energy saving[J]. Energy Environ. Sci., 2010,3:1191−1206. doi: 10.1039/c0ee00026d
    [7] Yan Yan, Li Bing, Pang Huan, et al. Vanadium based materials as electrode materials for high performance supercapacitors[J]. Journal of Power Sources, 2016,329:148−169. doi: 10.1016/j.jpowsour.2016.08.039
    [8] Liu Ying, Chang Jianguo, Liu Lingyang, et al. Study on the voltage drop of vanadium nitride/carbon composites derived from the pectin/VCl3 membrane as a supercapacitor anode material[J]. New J. Chem., 2020,44:6791−6798. doi: 10.1039/D0NJ00997K
    [9] Zhang Wenlin, Ji Xiwei, Ma Nan, et al. Wettability improvement of vanadium nitride/carbon electrodenanomaterial by electrostatic absorption of hydrophilic poly (allylaminehydrochloride)[J]. Applied Surface Science, 2020,525:146619. doi: 10.1016/j.apsusc.2020.146619
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  348
  • HTML全文浏览量:  31
  • PDF下载量:  78
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-26
  • 网络出版日期:  2022-11-01
  • 刊出日期:  2022-11-01

目录

    /

    返回文章
    返回