留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ce对V-Mo/Ti脱硝催化剂抗K中毒性能的影响研究

黄力 岳彦伟 纵宇浩 王虎 李金珂 高义博 韩沛

黄力, 岳彦伟, 纵宇浩, 王虎, 李金珂, 高义博, 韩沛. Ce对V-Mo/Ti脱硝催化剂抗K中毒性能的影响研究[J]. 钢铁钒钛, 2022, 43(5): 52-58. doi: 10.7513/j.issn.1004-7638.2022.05.008
引用本文: 黄力, 岳彦伟, 纵宇浩, 王虎, 李金珂, 高义博, 韩沛. Ce对V-Mo/Ti脱硝催化剂抗K中毒性能的影响研究[J]. 钢铁钒钛, 2022, 43(5): 52-58. doi: 10.7513/j.issn.1004-7638.2022.05.008
Huang Li, Yue Yanwei, Zong Yuhao, Wang Hu, Li Jinke, Gao Yibo, Han Pei. Investigation of the effect of Ce on the K resistance of V-Mo/Ti de-NOx catalyst[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(5): 52-58. doi: 10.7513/j.issn.1004-7638.2022.05.008
Citation: Huang Li, Yue Yanwei, Zong Yuhao, Wang Hu, Li Jinke, Gao Yibo, Han Pei. Investigation of the effect of Ce on the K resistance of V-Mo/Ti de-NOx catalyst[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(5): 52-58. doi: 10.7513/j.issn.1004-7638.2022.05.008

Ce对V-Mo/Ti脱硝催化剂抗K中毒性能的影响研究

doi: 10.7513/j.issn.1004-7638.2022.05.008
基金项目: 江苏省自然科学基金(BK20210001)
详细信息
    作者简介:

    黄力,1986年出生,男,江苏南京人,硕士研究生,高级工程师,长期从事脱硝催化剂方面的研究工作,E-mail: huangl@dteg.com.cn

    通讯作者:

    韩沛,1981年出生,男,内蒙古包头人,博士,讲师,E-mail: solidking@163.com

  • 中图分类号: TQ426, X511

Investigation of the effect of Ce on the K resistance of V-Mo/Ti de-NOx catalyst

  • 摘要: 为增强工业V-Mo/Ti脱硝催化剂的抗K中毒性能,对其进行Ce改性。采用XRD、SEM、N2-吸附脱附、H2-TPR、XPS、NH3-TPD、NH3-DRIFTS等表征手段,分析了催化剂的物理性质和化学性质。使用固定床微型反应器,研究了Ce对V-Mo/Ti催化剂脱硝性能、抗K中毒性能的影响。结果显示:Ce的引入,增加了V-Mo/Ti催化剂的脱硝活性。同时,减轻了V-Mo/Ti催化剂因K中毒所引起的比表面积、还原性能、Oα/(Oα+Oβ)比率、酸性的下降。V-Mo-Ce-K/Ti催化剂的脱硝活性明显优于V-Mo-K/Ti催化剂,即Ce有效增强了V-Mo/Ti催化剂的抗K中毒性能。
  • 图  1  不同催化剂的XRD谱

    Figure  1.  XRD patterns of different catalysts

    图  2  不同催化剂的SEM形貌

    Figure  2.  SEM profiles of different catalysts

    (a) V-Mo/Ti; (b) V-Mo-Ce/Ti; (c) V-Mo-K/Ti; (d) V-Mo-Ce-K/Ti

    图  3  不同催化剂的H2-TPR曲线

    Figure  3.  H2-TPR profiles of different catalysts

    图  4  不同催化剂的V2p (a)、O1s (b)和Ce3d (c)的 XPS曲线

    Figure  4.  XPS profiles of the V2p (a), O1s (b), and Ce3d (c) of different catalysts

    图  5  不同催化剂的NH3-TPD曲线(a)和NH3-DRIFTS曲线(b)

    Figure  5.  NH3-TPD (a) and NH3-DRIFTS (b) profiles of different catalysts

    图  6  不同催化剂的脱硝效率(a)和失活率(b)

    Figure  6.  NOx conversion (a) and deactivate rate (b) of different catalysts

    表  1  不同催化剂的粒径分析数据

    Table  1.   Distribution of particle size of different catalysts

    催化剂D10/nmD50/nmD90/nm
    V-Mo/Ti0.780.951.13
    V-Mo-Ce/Ti0.770.931.12
    V-Mo-K/Ti0.810.991.20
    V-Mo-Ce-K/Ti0.790.961.17
    下载: 导出CSV

    表  2  不同催化剂的孔结构分析数据

    Table  2.   Textural property of different catalysts

    催化剂比表面积/(m2·g−1)孔容/(cm3·g−1)平均孔径/nm
    V-Mo/Ti82.10.3416.6
    V-Mo-Ce/Ti79.20.3217.1
    V-Mo-K/Ti66.90.2717.9
    V-Mo-Ce-K/Ti72.40.2917.5
    下载: 导出CSV

    表  3  不同催化剂的XPS分析数据

    Table  3.   XPS analysis data of different catalysts

    催化剂V5+/(V3++V4++V5+)Oα/(Oα+Oβ)Ce3+/(Ce3++Ce4+)
    V-Mo/Ti0.260.14
    V-Mo-Ce/Ti0.290.160.29
    V-Mo-K/Ti0.220.10
    V-Mo-Ce-K/Ti0.260.130.24
    下载: 导出CSV
  • [1] Tang Changjin, Sun Jingfang, Dong Lin. Recent process on elimination of NOx from flue gas via SCR technology under ultra-low temperature(<150 ℃)[J]. CIESC Journal, 2020,71(11):4873−4884. (汤常金, 孙敬方, 董林. 超低温(<150 ℃)SCR脱硝技术研究进展[J]. 化工学报, 2020,71(11):4873−4884.
    [2] Xing Yi, Zhang Wenbo, Su Wei, et al. Research of ultra-low emission technologies of the iron and steel industry in China[J]. Chinese Journal of Engineering, 2021,43(1):1−9. (邢奕, 张文伯, 苏伟, 等. 中国钢铁行业超低排放之路[J]. 工程科学学报, 2021,43(1):1−9.
    [3] Qian Lixin, Yang Tao, Long Hongming, et al. Deactivation and regeneration of V2O5-WO3/TiO2 catalysts in the sintering flue gas[J]. Sintering and Pelletizing, 2020,45(4):71−76. (钱立新, 杨涛, 龙红明, 等. 烧结烟气V2O5-WO3/TiO2催化剂失活及再生[J]. 烧结球团, 2020,45(4):71−76.
    [4] Li Xiang, Li Xiansheng, Yang R T, et al. The poisoning effects of calcium on V2O5-WO3/TiO2 catalyst for the SCR reaction: Comparison of different forms of calcium[J]. Molecular Catalysis, 2017,434:16−24. doi: 10.1016/j.mcat.2017.01.010
    [5] Ali Z, Wu Yangwen, Wu Yue, et al. Inhibition effects of Pb species on the V2O5-MoO3/TiO2 catalyst for selective catalytic reduction of NOx with NH3: A DFT supported experimental study[J]. Applied Surface Science, 2020,525:146582−146592. doi: 10.1016/j.apsusc.2020.146582
    [6] Niu Tianqi, Wang Jia, Chu Huichao, et al. Deep removal of arsenic from regenerated products of spent V2O5-WO3/TiO2 SCR catalysts and its concurrent activation by bioleaching through a novel mechanism[J]. Chemical Engineering Journal, 2020,420(1):127722−127736.
    [7] Liu Zhong, Han Jian, Zhao Li, et al. Effects of Se and SeO2 on the denitrification performance of V2O5-WO3/TiO2 SCR catalyst[J]. Applied Catalysis A, General, 2019,587:117263−117272. doi: 10.1016/j.apcata.2019.117263
    [8] Chen Yong, Zheng Penghui, Fan Yanlin. The approach of SCR technology applied in sintering flue gas[J]. Scientific and Technological Innovation, 2021,1:173−174. (陈勇, 郑鹏辉, 樊彦玲. 烧结烟气SCR脱硝技术探讨[J]. 科学技术创新, 2021,1:173−174. doi: 10.3969/j.issn.1673-1328.2021.01.080
    [9] Wei Jinke, Zhang Qiang, Li Yongguang. Analysis on causation for deactivation of medium temperature denitration catalyst in sintering machine[J]. Hebei Metallurgy, 2021,12:75−79. (韦晋科, 张强, 李永光. 烧结机中温SCR脱硝催化剂失活原因分析[J]. 河北冶金, 2021,12:75−79. doi: 10.13630/j.cnki.13-1172.2021.1216
    [10] Liu Xianbin, Duan Yankang, Ping Yuan, et al. Analysis on causation for deactivation of denitration in a sintering plant[J]. Modern Chemical Industry, 2020,40:238−241. (刘显彬, 段言康, 平原, 等. 烧结厂脱硝催化剂的失活原因分析[J]. 现代化工, 2020,40:238−241. doi: 10.16606/j.cnki.issn0253-4320.2020.S.052
    [11] Li Xiang, Li Junhua, He Xv, et al. Poisoning mechanism and regeneration process of the denitration catalyst[J]. Chemical Industry and Engineering Process, 2015,34(12):4129−4138. (李想, 李俊华, 何煦, 等. 烟气脱硝催化剂中毒机理机制与再生技术[J]. 化工进展, 2015,34(12):4129−4138.
    [12] Kang Keke, Yao Xiangjiang, Huang Yike, et al. Insights into the co-doping effect of Fe3+ and Zr4+ on the anti-K performance of CeTiOx catalyst for NH3-SCR reaction[J]. Journal of Hazardous Materials, 2021,416:125821−125833. doi: 10.1016/j.jhazmat.2021.125821
    [13] Huang Li, Zeng Yiqing, Chang Zhengfeng, et al. Promotional effect of phosphorus modification on improving the Na resistance of V2O5-MoO3/TiO2 catalyst for selective catalytic reduction of NOx by NH3[J]. Molecular Catalysis, 2021,506:111565−111571. doi: 10.1016/j.mcat.2021.111565
    [14] Zhang Yanbin, Chen Yingzan, Guo Zheng, et al. Research progress of catalyst for simultaneous denitration and mercury removal[J]. Natural Gas Chemical Industry, 2021,46(6):9−16. (张延兵, 陈英赞, 郭政, 等. 同步脱硝脱汞催化剂研究进展[J]. 天然气化工, 2021,46(6):9−16.
    [15] Liu Xiaolong, Zhao Ziwei, Ning Ruliang, et al. Ce-doped V2O5-WO3/TiO2 with low vanadium loadings as SCR catalysts and the resistance of H2O and SO2[J]. Catalysis Letters, 2020,150:375−383. doi: 10.1007/s10562-019-03077-y
    [16] Yao Rui, Yin Tao, Bai Zilong, et al. The effect of Ce-doping on NO catalytic oxidation on Mn-Co/TiO2[J]. Chemical World, 2015,10:601−606. (姚瑞, 尹涛, 柏子龙, 等. Ce掺杂对Mn-Co/TiO2催化剂催化氧化NO的影响[J]. 化学世界, 2015,10:601−606.
    [17] Xiao Haiping, Dou Chaozong, Ru Yu, et al. The effect of K salts on SO2-SO3 conversion and denitration behavior over V2O5-WO3/TiO2 catalysts[J]. Catalysis Surveys from Asia, 2019,23:41−51. doi: 10.1007/s10563-019-09265-5
    [18] Huang Li, Wang Hu, Zong Yuhao, et al. Influence of yttrium on denitrification performance of V2O5-MoO3/TiO2 catalyst[J]. Modern Chemical Industry, 2020,40(3):162−166. (黄力, 王虎, 纵宇浩, 等. Y改性对V2O5-MoO3/TiO2催化剂脱硝性能的影响[J]. 现代化工, 2020,40(3):162−166.
    [19] Liang Chen, Li Junhua, Ge Maofa. Promotional effect of Ce-doped V2O5-WO3/TiO2 with low vanadium loadings for selective catalytic reduction of NOx by NH3[J]. The Journal of Physical Chemistry C, 2009,113(50):21177−21184. doi: 10.1021/jp907109e
    [20] Ma Ziran, Wu Xiaodong, Feng Ya, et al. Low-temperature SCR activity and SO2 deactivation mechanism of Ce-modified V2O5-WO3/TiO2 catalyst[J]. Progress in Natural Science:Materials International, 2015,25:342−352. doi: 10.1016/j.pnsc.2015.07.002
    [21] Chen Mengyin, Zhao Mengmeng, Tang Fushun, et al. Effect of Ce doping into V2O5-WO3/TiO2 catalysts on the selective catalytic reduction of NOx by NH3[J]. Journal of Rare Earths, 2017,35:1206−1215. doi: 10.1016/j.jre.2017.06.004
    [22] Kong Ming, Liu Q C, Jiang Lijun, et al. K+ deactivation of V2O5-WO3/TiO2 catalyst during selective catalytic reduction of NO with NH3: Effect of vanadium content[J]. Chemical Engineering Journal, 2019,370:518−526. doi: 10.1016/j.cej.2019.03.156
    [23] Yao Jia, Liu Shaoguang, Lin Wensong, et al. Study on performance of Ce-Cr-Ni /TiO2 catalysts in CO-SCR[J]. Modern Chemical Industry, 2019,39(5):123−127. (姚佳, 刘少光, 林文松, 等. Ce-Cr-Ni/TiO2催化剂的CO-SCR性能研究[J]. 现代化工, 2019,39(5):123−127.
    [24] Wu Yanxia, Wang Xianzhong, Liang Hailong, et al. Effect of potassium salt deposition on denitration performance of VMoTi catalyst[J]. Rare Metal Materials and Engineering, 2021,50(7):2343−2351.
    [25] Kong Ming, Liu Qingcai, Zhou Jian, et al. Effect of different potassium species on the deactivation of V2O5-WO3/TiO2 SCR catalyst: Comparison of K2SO4, KCl and K2O[J]. Chemical Engineering Journal, 2018,348:637−643. doi: 10.1016/j.cej.2018.05.045
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  165
  • HTML全文浏览量:  36
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-14
  • 网络出版日期:  2022-11-05
  • 刊出日期:  2022-10-28

目录

    /

    返回文章
    返回