留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

TA2工业纯钛焊接接头中低温拉伸力学性能及本构模型

赵青 常乐 郑逸翔 宋高峰 叶有俊 谢毅 谭雪龙

赵青, 常乐, 郑逸翔, 宋高峰, 叶有俊, 谢毅, 谭雪龙. TA2工业纯钛焊接接头中低温拉伸力学性能及本构模型[J]. 钢铁钒钛, 2022, 43(5): 81-89. doi: 10.7513/j.issn.1004-7638.2022.05.012
引用本文: 赵青, 常乐, 郑逸翔, 宋高峰, 叶有俊, 谢毅, 谭雪龙. TA2工业纯钛焊接接头中低温拉伸力学性能及本构模型[J]. 钢铁钒钛, 2022, 43(5): 81-89. doi: 10.7513/j.issn.1004-7638.2022.05.012
Zhao Qing, Chang Le, Zheng Yixiang, Song Gaofeng, Ye Youjun, Xie Yi, Tan Xuelong. Tensile mechanical properties and constitutive model of commercial pure titanium TA2 welded joints at medium-low temperature[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(5): 81-89. doi: 10.7513/j.issn.1004-7638.2022.05.012
Citation: Zhao Qing, Chang Le, Zheng Yixiang, Song Gaofeng, Ye Youjun, Xie Yi, Tan Xuelong. Tensile mechanical properties and constitutive model of commercial pure titanium TA2 welded joints at medium-low temperature[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(5): 81-89. doi: 10.7513/j.issn.1004-7638.2022.05.012

TA2工业纯钛焊接接头中低温拉伸力学性能及本构模型

doi: 10.7513/j.issn.1004-7638.2022.05.012
基金项目: 国家自然科学基金项目(51905260);江苏省特检院科研项目(KJ(Y)2020032)。
详细信息
    作者简介:

    赵青,1984年出生,安徽合肥人,在职研究生,高级工程师,主要研究方向为工程与材料的研究、特种设备检验检测,E-mail:zhao_qing@163.com/174328684@qq.com

  • 中图分类号: TF823

Tensile mechanical properties and constitutive model of commercial pure titanium TA2 welded joints at medium-low temperature

  • 摘要: 以TA2工业纯钛焊接接头为研究对象,开展了不同温度和应变速率下的拉伸试验,分析了温度及应变速率对于材料强度及流变应力的影响。结果表明:TA2焊接接头的屈服强度与温度呈线性关系,与应变速率呈指数关系,并建立了屈服强度与温度和应变速率的经验公式。基于Arrhenius、Johnson-Cook (JC)及Modified Zerilli-Armstrong (MZA)本构方程,对工业纯钛焊接接头的中低温拉伸流变应力进行预测。将三种模型的预测值与试验值进行定量对比,发现JC模型预测精度最低,MZA模型预测精度最高。研究结果为钛材在承压设备中的应用提供数据支撑,有利于更好地设计、加工、制造和使用钛制承压设备。
  • 图  1  拉伸试样尺寸(单位:mm)

    Figure  1.  Detailed dimension of tensile specimen

    图  2  TA2焊接接头应力应变曲线的温度与应变速率敏感性

    Figure  2.  The temperature sensitivity and strain rate sensitivity of stress-strain cures of TA2 welded joints

    图  3  屈服强度的温度和应变速率敏感性

    Figure  3.  The temperature sensitivity and strain rate sensitivity of yield stress

    图  4  双对数坐标系下屈服强度与应变速率的关系

    Figure  4.  Relationship between yield strength parameters and strain rate in the double log coordinate system

    图  5  JC本构方程参数获取过程

    Figure  5.  Calculation processes of JC constitutive parameters

    图  6  MZA本构方程参数获取过程

    Figure  6.  Calculation processes of MZA constitutive parameters

    图  7  Arrhenius 本构方程参数获取过程

    Figure  7.  Calculation processes of Arrhenius constitutive parameters

    图  8  0.0005 s−1应变速率时不同温度的JC、MZA、Arrhenius模型预测值与试验值

    Figure  8.  The predicted and tested values of JC, MZA and Arrhenius models at different temperatures at strain rate of 0.0005 s−1

    图  9  温度20 ℃下不同应变速率的JC、MZA、Arrhenius模型预测值与试验值

    Figure  9.  The predicted and tested values of JC, MZA and Arrhenius models at different strain rates at 20 ℃

    图  10  不同温度(a)和不同应变速率下(b)JC、MZA、Arrhenius模型误差

    Figure  10.  Model errors of JC, MZA and Arrhenius at different temperatures (a) and strain rates (b)

    表  1  拉伸试验方案

    Table  1.   Tensile test scheme

    温度/℃应变速率/$ {\mathrm{s}}^{-1} $
    200.000050.00050.005
    1500.000050.00010.00050.0010.005
    2250.000050.00010.00050.0010.005
    3000.000050.00050.005
    下载: 导出CSV

    表  2  工业纯钛焊接接头的JC本构方程材料参数

    Table  2.   The JC constitutive parameters of TA2 welded joint

    ABnCm
    339691.829880.554740.037760.8211
    下载: 导出CSV

    表  3  工业纯钛焊接接头的MZA本构方程材料参数

    Table  3.   The MZA constitutive parameters of TA2 welded joint

    n$ {C_1} $$ {C_2} $$ {C_3} $$ {C_4} $$ {C_5} $$ {C_6} $
    0.559633397200.00387−0.001730.034010.0000993431
    下载: 导出CSV

    表  4  工业纯钛的 Arrhenius 本构方程材料参数

    Table  4.   The Arrhenius constitutive parameters of CP-Ti

    $ \mathrm{I}\mathrm{n}\mathrm{t}\mathrm{e}\mathrm{r} $$ {b}_{1} $$ {b}_{2} $$ {b}_{3} $$ {b}_{4} $
    α0.00274−0.04751.26433−15.7821172.83189
    n40.518973597.53995193783.7292$ -3.7\times {10}^{6} $$ -2.3\times {10}^{7} $
    Q224.7685120043.62102$ 1.09\times {10}^{6} $$ -2.1\times {10}^{7} $$ 1.3\times {10}^{8} $
    $ \mathrm{ln}A $76.287−7492.11985406983.1909$ -7.8\times {10}^{6} $$ 4.94\times {10}^{7} $
    下载: 导出CSV

    表  5  本构模型相关系数$ {\mathit{R}}{{'}} $的比较

    Table  5.   Comparison of correlation coefficient R' for different constitutive models

    本构模型参数数量$ R' $
    JC50.817
    MZA70.887
    Arrhenius200.859
    下载: 导出CSV
  • [1] Wang Hao. Application prospect of titanium[J]. China Metal Bulletin, 2011,(37):16−18. (王镐. 钛应用前景广阔[J]. 中国金属通报, 2011,(37):16−18.
    [2] Chang Le, Zhou Changyu, Peng Jian, et al. Fields–Backofen and a modified Johnson-Cook model for CP-Ti at ambient and intermediate temperature[J]. Rare Metal Materials and Engineering, 2017,46(7):1803−1809. doi: 10.1016/S1875-5372(17)30170-4
    [3] Peng Jian, Zhou Changyu, Dai Qiao, et al. An improved constitutive description of tensile behavior for CP-Ti at ambient and intermediate temperatures[J]. Materials and Design, 2013,50:968−976. doi: 10.1016/j.matdes.2013.04.003
    [4] Peng Jian, Zhou Changyu, Dai Qiao, et al. The temperature and stress dependent primary creep of CP-Ti at low and intermediate temperature[J]. Materials Science and Engineering A, 2014,611:123−135. doi: 10.1016/j.msea.2014.05.094
    [5] Chang Le, Ma Tianhao, Zhou Binbin, et al. Comprehensive investigation of fatigue behavior and a new strain-life model for CP-Ti under different loading conditions[J]. International Journal of Fatigue, 2019,129:105220. doi: 10.1016/j.ijfatigue.2019.105220
    [6] Chang Le, Zhou Binbin, Ma Tianhao, et al. The difference in low cycle fatigue behavior of CP-Ti under fully reversed strain and stress-controlled modes along rolling direction[J]. Materials Science & Engineering A, 2019,742:211−223.
    [7] Chang Le, Wen Jianbin, Zhou Changyu, et al. Uniaxial ratcheting behavior and fatigue life models of commercial pure titanium[J]. Fatigue & Fracture of Engineering Materials & Structures, 2018,41(9):1−16.
    [8] Li Jian, Zhang Peng, Lu Lei, et al. Effect of pre-strain on fatigue crack growth behavior for commercial pure titanium at ambient temperature[J]. International Journal of Fatigue, 2018,117:27−38. doi: 10.1016/j.ijfatigue.2018.07.036
    [9] Sun Pengyan, Zhu Zhikang, Lu Lei, et al. Experimental characterisation of mechanical behaviour for a TA2 welded joint using digital image correlation[J]. Optics and Lasers in Engineering, 2019,115:161−171. doi: 10.1016/j.optlaseng.2018.11.022
    [10] Lu Lei, Li Jian, Su Chuanyi, et al. Research on fatigue crack growth behavior of commercial pure titanium base metal and weldment at different temperatures[J]. Theoretical and Applied Fracture Mechanics, 2019,100:215−224. doi: 10.1016/j.tafmec.2019.01.017
    [11] Su Chuanyi, Zhou Changyu, Lu Lei, et al. Effect of temperature and dwell time on fatigue crack growth behavior of CP-Ti[J]. Metals, 2018,8(12):1031. doi: 10.3390/met8121031
    [12] Johnson G R, Cook W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[C]// Proceedings of the 7th International Symposium on Ballistics. Den Haag: The Netherlands, 1983: 541–543.
    [13] Shi H, McLaren A J, Sellars C M, et al. Constitutive equations for high temperature flow stress of aluminium alloys[J]. Mater Sci Technol, 13 (3): 210-216.
    [14] Samantaray D, Mandal S, Borah U, et al. Thermo-viscoplastic constitutive model to predict elevated-temperature flow behaviour in a titanium-modified austenitic stainless steel[J]. Mater. Sci. Eng. A, 2009,(526):1−6.
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  68
  • HTML全文浏览量:  5
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-21
  • 刊出日期:  2022-11-01

目录

    /

    返回文章
    返回