留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

轧制法制备钛铝复合板的研究进展

庞立娟 李会容 邓刚 张雪峰

庞立娟, 李会容, 邓刚, 张雪峰. 轧制法制备钛铝复合板的研究进展[J]. 钢铁钒钛, 2022, 43(5): 90-98. doi: 10.7513/j.issn.1004-7638.2022.05.013
引用本文: 庞立娟, 李会容, 邓刚, 张雪峰. 轧制法制备钛铝复合板的研究进展[J]. 钢铁钒钛, 2022, 43(5): 90-98. doi: 10.7513/j.issn.1004-7638.2022.05.013
Pang Lijuan, Li Huirong, Deng Gang, Zhang Xuefeng. Research progress on Ti/Al clads by rolling[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(5): 90-98. doi: 10.7513/j.issn.1004-7638.2022.05.013
Citation: Pang Lijuan, Li Huirong, Deng Gang, Zhang Xuefeng. Research progress on Ti/Al clads by rolling[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(5): 90-98. doi: 10.7513/j.issn.1004-7638.2022.05.013

轧制法制备钛铝复合板的研究进展

doi: 10.7513/j.issn.1004-7638.2022.05.013
基金项目: 四川省攀西战略资源创新开发试验区第四批重大科技攻关项目(1840STC30697/01);攀枝花科技计划项目(2020CY-G-8)。
详细信息
    作者简介:

    庞立娟,1982年出生,女,山东济南人,博士,副教授,主要从事钛材深加工技术研究,E-mail:26733982@qq.com

    通讯作者:

    张雪峰,1965年出生,男,四川仁寿人,教授,主要从事钒钛材料深加工研究,E-mail:532256335@qq.com

  • 中图分类号: TF823,TF335.8

Research progress on Ti/Al clads by rolling

  • 摘要: 钛铝复合板兼具钛和铝合金各自的优点,广泛应用于多个工业领域。轧制法是目前制备钛铝复合板最成熟的方法。介绍了轧制法制备钛铝复合板涉及的基本理论以及影响界面结合强度的因素,对目前钛铝复合板结合强度检测方法进行了总结,以期为钛铝复合板的制备提供较为全面的指导。分析认为:钛/铝复合板要实现良好的界面结合,其变形率要大于阈值,阈值的具体数值随轧制方法的不同而变化。波纹辊轧制、叠层累积轧制等轧制方法在相同的压下量条件下,界面结合强度高于普通平轧;轧后热处理会生成一定厚度的界面层,界面层主要为TiAl3金属间化合物,并且界面层的厚度需要控制在合理范围之内;钛铝复合板层的层数越多,界面起伏越明显,有利于界面结合强度的提高。
  • 图  1  总变形率对TA1/LY12轧后结合强度的影响

    Figure  1.  The effect of total rolling reduction on bonding strength of TA1/LY12 clads after rolling

    图  2  累积叠轧法示意

    Figure  2.  Schematic diagram of accumulative rolling process

    图  3  加热温度和保温时间对TA1/LY12结合强度的影响

    Figure  3.  The effect of holding time and temperature on bonding strength of TA1/LY12 clads after rolling

    图  4  不同层厚及不同层数钛铝复合板界面的微观形貌及元素分布[49]

    Figure  4.  The morphology, interface and element distribution for Ti-Al laminate composite[49]

    (a) (b) (c) 0.4 mm Al/0.4 mm Ti;(d) (e) (f) 0.2 mm Al/0.25 mm Ti;(g) (h) (i) 0.1 mm Al/0.15 mm Ti

    图  5  剪切及拉剪试样尺寸示意

    Figure  5.  Schematic diagram of shear and tensile shear sample

  • [1] He Wei, Lei Wenjie, Peng Dandi. Effects of stress-relief annealing on mechanical properties and microstructure of TB15 titanium alloy[J]. Hot Working Technology, 2021,50(24):146−151. (贺韡, 雷文杰, 彭丹迪. 去应力退火对TB15钛合金力学性能和组织的影响[J]. 热加工工艺, 2021,50(24):146−151.
    [2] Wang Yao, Li Yonggang, Li Wenhui, et al. Barrel finishing properties of TC4 titanium alloy with cryogenic treatment[J]. Chinese Journal of Rare Metals, 2020,45(11):1289−1298. (王瑶, 李永刚, 李文辉, 等. 深冷处理对TC4钛合金滚磨光整加工性能的影响[J]. 稀有金属, 2020,45(11):1289−1298. doi: 10.13373/j.cnki.cjrm.XY19080032
    [3] Zheng Yufeng, Xia Dandan, Shen Yunong, et al. Additively manufactured biodegradable metal implants[J]. Acta Metallurgica Sinica, 2021,57(11):1499−1520. (郑玉峰, 夏丹丹, 谌雨农, 等. 增材制造可降解金属医用植入物[J]. 金属学报, 2021,57(11):1499−1520. doi: 10.11900/0412.1961.2021.00294
    [4] Huang Jianguo, Xu Shubin. Research status and prospect of aluminum alloy manufactured by slective laser melting[J]. Materials Reports, 2021,35(23):142−152. (黄建国, 徐淑彬. 选区激光熔化成型铝合金的研究现状及展望[J]. 材料导报, 2021,35(23):142−152. doi: 10.11896/cldb.20060035
    [5] 马琳, 宋雨健, 崔庆贺, 等. 搅拌摩擦加工工艺及水冷对A356合金晶粒细化作用及变形控制[J]. 材料导报, 2021, 24(35): 122-127.

    Ma Lin, Song Yujian, Cui Qinghe, et al. Effect of friction stir processing parameters and water cooling on grain refinement and deformation control of A356 casting aluminum alloy[J]. Materials Reports, 2021, 24(35): 122-127.
    [6] 季玲玲. 钛-7A52铝合金轧制复合工艺研究[D]. 沈阳: 东北大学, 2012.

    Ji Lingling. Research on roll bonding process of titanium-7A52 aluminum alloy clad sheets[D]. Shenyang: Northeastern University, 2012.
    [7] Kim D W, Lee D H, Kim J, et al. Novel twin-roll-cast Ti/Al clad sheets with excellent tensile properties[J]. Scientific Reports. 2017, 7(1): 8110-8121.
    [8] Fronczek D M, Wojewoda-Budka J, Chulist R, et al. Structural properties of Ti/Al clads manufactured by explosive welding and annealing[J]. Materials & Design, 2016, 91: 80-89.
    [9] Guo Xunzhong, Fan Minyu, Liu Zhongli, et al. Explosive cladding and hot pressing of Ti/Al/Ti laminates[J]. Rare Metal Materials and Engineering, 2017,46(5):1192−1196. (郭训忠, 范敏郁, 刘忠利, 等. 钛/铝/钛层状复合材料的爆炸复合制备及后续热压处理研究[J]. 稀有金属材料与工程(英文), 2017,46(5):1192−1196. doi: 10.1016/S1875-5372(17)30135-2
    [10] Fan Minyu, Guo Xunzhong, Cui Shengqiang, et al. One-step explosive bonding preparation of titanium/aluminium/titanimu laminates with three layers[J]. Rare Metal Materials and Engineering, 2017,46(3):770−776. (范敏郁, 郭训忠, 崔圣强, 等. 钛/铝/钛三层板的一次爆炸复合[J]. 稀有金属材料与工程, 2017,46(3):770−776.
    [11] Li Yan, Chen Chuang, Li Yanbiao, et al. Interface characterization and metallurgical bonding mechanism of Ti/Al explosively welded composite plates[J]. Pressure Vessel Technology, 2021,38(7):9−16. (李岩, 陈闯, 李艳彪, 等. 钛/铝爆炸焊接复合板界面表征及冶金连接机制[J]. 压力容器, 2021,38(7):9−16. doi: 10.3969/j.issn.1001-4837.2021.07.002
    [12] Liu Yingbin, Yin Chufan, An Wentong, et al. Study on explosive welding of titanium/aluminum multilayer composite bond[J]. Hot Working Technology, 2021,50(11):128−136. (刘迎彬, 尹楚藩, 安文同, 等. 钛/铝多层复合板爆炸焊接研究[J]. 热加工工艺, 2021,50(11):128−136. doi: 10.14158/j.cnki.1001-3814.20192728
    [13] 宗恒达. 钛/铝复合板爆炸焊接数值模拟及试验分析[D] . 西安: 长安大学, 2021.

    Zong Hengda. Numerical simulation and experimental analysis of explosive welding of titanium/aluminum clad plate[D]. Xi’an: Chang’an University, 2021.
    [14] Yan Xuebai, Li Zhenghua, Li Xuanming, et al. Effect of rolling parameters on the bonding strength and morphology of the peeled surface of Ti/Al clad sheet[J]. Rare Metal Materials and Engineering, 1991,20(4):36−44. (颜学柏, 李正华, 李选明, 等. 轧制参数对钛/铝轧制复合板的结合强度和剥离面SEM形貌的影响[J]. 稀有金属材料与工程, 1991,20(4):36−44. doi: 10.3321/j.issn:1002-185X.1991.04.005
    [15] 王明鑫. 钛铝轧制复合的工艺及数值模拟研究[D]. 沈阳: 东北大学, 2012.

    Wang Mingxin. Study of numerical simulation on roll bonding process of titanium-7A52 aluminum alloy[D]. Shenyang: Northeastern University, 2012.
    [16] Wang Wenji, Wang Yuhao, Wang Yifan, et al. Experimental study on interface property improvement of titanium-aluminum composite plate in vibrating cast-rolling forming[J]. Journal of Plasticity Engineering, 2021,28(12):44−50. (王文基, 王宇浩, 王一帆, 等. 钛铝复合板振动铸轧成形界面性能实验研究[J]. 塑性工程学报, 2021,28(12):44−50. doi: 10.3969/j.issn.1007-2012.2021.12.006
    [17] Han Yujie, Jiang Bo, Hou Hongliang, et al. Mechanical property analysis of Ti/Al laminated composites manufactured by ultrasonic consolidation process[J]. Chinese Journal of Rare Metals, 2020,44(6):597−602. (韩玉杰, 姜波, 侯红亮, 等. 超声固结Ti/Al叠层复合材料力学性能分析[J]. 稀有金属, 2020,44(6):597−602.
    [18] 曹苗. Ti/Al层状复合材料的微观组织、力学性能和成形行为研究[D]. 太原: 太原理工大学, 2021: 20−21.

    Cao Miao. Study on microstructure, mechanical properties and formability of Ti/Al laminated composites [D]. Taiyuan: Taiyuan University of Technology, 2021: 20−21.
    [19] Wang Wenyan, Shi Shiqin, Shang Zhengping, et al. Interfacial microstructure and properties of Ti-Al rolling-casted composite plate[J]. Special-cast and Non-ferrous Alloys, 2016,36(10):1084−1088. (王文焱, 史士钦, 尚郑平, 等. 铸轧法制备钛铝复合板的界面组织与性能[J]. 特种铸造及有色合金, 2016,36(10):1084−1088. doi: 10.15980/j.tzzz.2016.10.022
    [20] Guo Leiming, Wang Wenyan, Huang Yabo, et al. Effect of annealing process on microstructure and properties of interface of cast and rolled Ti-Al compostie plate[J]. Heat Treatment of Metals, 2018,43(4):194−198. (郭雷明, 王文焱, 黄亚博, 等. 退火工艺对铸轧钛铝复合板界面组织与性能的影响[J]. 金属热处理, 2018,43(4):194−198. doi: 10.13251/j.issn.0254-6051.2018.04.039
    [21] 崔鹏鹏. 双金属带材固液复合铸轧过程的研究[D]. 太原: 太原理工大学, 2016: 50−51.

    Cui Pengpeng. Research on bimetal strip solid-liquid composite rolling-cast process[D]. Taiyuan: Taiyuan University of Technology, 2016: 50−51.
    [22] Huang H G, Chen P, Ji C. Solid-liquid cast-rolling bonding (SLCRB) and annealing of Ti/Al[J]. Materials & Design, 2017,118(15):233−244.
    [23] Wolcott P J, Sridharan N, Babu S S, et al. Characterisation of Al-Ti dissimilar material joints fabricated using ultrasonic additive manufacturing[J]. Science and Technology of Welding and Joining, 2016,21(2):114−123. doi: 10.1179/1362171815Y.0000000072
    [24] Zhang J Y, Zhao X J, Wang Y H, et al. Interfacial microstructure evolution during solid-liquid reaction in cold-rolled Ti/Al laminated composites[J]. Rare Metal Materials and Engineering, 2021,50(7):2375−2384.
    [25] Bowden F P, Tabor D. The area of contact between stationary and between moving surfaces[J]. Mathematical and Physical Sciences, 1939,169:391−413.
    [26] Burton M S. Metallurgical principles of metal bonding[J]. Welding Journal, 1954,33(11):1051−1054.
    [27] Cave J A, Williams J D. The mechanisms of cold pressure welding by rolling[J]. Journal of the Institure of Metals, 1973,7(101):203−207.
    [28] Vaidyanath L R. Pressure welding by rolling[J]. British Welding Journal, 1959,6:13−18.
    [29] Parks J M. Recrystallization in welding[J]. Welding Journal, 1953,32(5):209.
    [30] Jong S H, Sun L H. Deformation and fracture of Ti/439 stainless steel clad composite at intermediate temperatures[J]. Materials Science and Engineering A, 2016,651:805−809. doi: 10.1016/j.msea.2015.11.041
    [31] Bay N. Characteristics, bonding mechanisms, bond strength[J]. Metal Construction, 1986,18(6):369−374.
    [32] Bay N. Influence of surface preparation on bond strength[J]. Metal Construction, 1986,18(10):625−629.
    [33] Qi Zichen, Yu Chao, Xiao Hong, et al. Deformation coordination compatibility and bondign properties of Ti/Al composite plates prepared by different temperature rolling[J]. The Chinese Journal of Nonferrous Metals, 2018,28:1121−1127. (祁梓宸, 余超, 肖宏, 等. 异温轧制制备钛/铝复合板的变形协调性与复合性能[J]. 中国有色金属学报, 2018,28:1121−1127. doi: 10.19476/j.ysxb.1004.0609.2018.06.05
    [34] Dong Xiaomeng, Ren Xueping, Wang Yaoqi, et al. Structure and mechanical properties of Ti/Al multilayered composite[J]. Chinese Journal of Rare Metals, 2017,41(11):1208−1213. (董晓萌, 任学平, 王耀奇, 等. 叠轧Ti/Al复合板结构与力学性能研究[J]. 稀有金属, 2017,41(11):1208−1213. doi: 10.13373/j.cnki.cjrm.xy16060018
    [35] 祖国胤. 层状金属复合材料制备理论与技术[M]. 沈阳: 东北大学出版社, 2013: 125-126.

    Zu Guoyin. Theories and technologies of preparation layered metal composite[M]. Shenyang: Northeastern University Press, 2013: 125-126.
    [36] Sun Y, Zhao Y, Zhang D, et al. Multilayered Ti-Al intermetallic sheets fabricated by cold rolling and annealing of titanium and aluminum foils[J]. Transactions of Nonferrous Metals Society of China, 2011,21(8):1722−1727. doi: 10.1016/S1003-6326(11)60921-7
    [37] 韩建超, 刘畅, 贾燚, 等. 钛/铝复合板研究进展[J], 中国有色金属学报, 2020, 30(6): 1270-1280.

    Han Jianchao, Liu Chang, Jia Yi, et al. Research progress on titanium/aluminum composite plate[J]. The Chinese Journal of Nonferrous Metals, 2020, 30(6): 1270-1280.
    [38] 刘畅. 钛/铝复合板波-平冷轧工艺及组织性能研究[D]. 太原: 太原理工大学, 2020: 67-68.

    Liu Chang. Corrugated-flat cold rolling process and microstructure and properties of Ti/Al composite plate[D]. Taiyuan: Taiyuan University of Technology, 2020: 67-68.
    [39] Li L, Nagai K, Yin F. Progress in cold roll bonding of metals[J]. Science and Technology of Advanced Materials, 2008,9:1468−1478.
    [40] Li Sha, Jia Yi, Liu Xinyang, et al. Research progress on rolling process of laminated Mg/Al clad plate[J]. Journal of Netshape Forming Engineering, 2021,13(6):1−11. (李莎, 贾燚, 刘欣阳, 等. 层状镁/铝复合板轧制工艺研究进展[J]. 精密成型工程, 2021,13(6):1−11.
    [41] Chekhonin P, Beausir B, Scharnweber J, et al. Confined recrystallization of high-purity aluminium during accumulative roll bonding of aluminium laminates[J]. Acta Materialia, 2012,60(11):4661−4671. doi: 10.1016/j.actamat.2012.04.004
    [42] Camilo D C, Kliauga A M, Ferrante M, et al. Asymmetric cryorolling of AA6061 Al alloy strain: Strain distribution, texture and age hardening behavior[J]. Materials Science and Engineering A, 2018,736:53−60. doi: 10.1016/j.msea.2018.08.075
    [43] Yan Xuebai, Li Zhenghua, Gao Wenzhu, et al. The effect of heat treatment to interface bonding strength and microstructure of titanium / hard aluminum laminated plates[J]. Journal of Materials Engineering, 1992,(S1):233−235. (颜学柏, 李正华, 高文柱, 等. 热处理对钛/硬铝合金轧制复合板界面结合性能和显微结构的影响[J]. 材料工程, 1992,(S1):233−235.
    [44] Assari A H, Eghbali B. Interfacial layers evolution during annealing in Ti-Al multi-laminated composite processed using hot press and roll bonding[J]. Metals and Materials International, 2016,22:915−923. doi: 10.1007/s12540-016-5647-z
    [45] Kattner U R, Lin J C, Chang Y A. Thermodynamic assessment and calculation of the Ti-Al system[J]. Metallurgical Transaction A, 1992,23:2081−2090. doi: 10.1007/BF02646001
    [46] Han Yinna, Zhang Xiaojun, Li Long, et al. Microstructure and properties of warm rolled Ti/Al clad plate during annealing[J]. Heat Treatment of Metals, 2017,42(11):45−51. (韩银娜, 张小军, 李龙, 等. 温轧钛/铝复合板退火过程的组织与性能[J]. 金属热处理, 2017,42(11):45−51. doi: 10.13251/j.issn.0254-6051.2017.11.009
    [47] Peng L M, Li H, Wang J H. Processing and mechanical behavior of laminated titanium-titanium trialuminide composites[J]. Materials Science and Engineering A, 2005,406(1-2):309−318. doi: 10.1016/j.msea.2005.06.067
    [48] 宋卓. 钛-铝层状复合板各向异性研究[D]. 洛阳: 河南科技大学, 2020: 78−79.

    Song Zhuo. Anisotropy of Ti/Al laminated composites[D]. Luoyang: Henan University of Science and Technology, 2020: 78−79.
    [49] Fan M, Domblesky J, Jin K, et al. Effect of original layer thicknesses on the interface bonding and mechanical properties of Ti/Al laminate composites[J]. Materials & Design, 2016,99:535−542.
    [50] 张轩昌. 颗粒增强镁板的制备、纤维组织及性能[D]. 太原: 太原理工大学, 2020: 41−42.

    Zhang Xuanchang. Preparation, microstructure and properties of particle reinforced magnesium sheet[D]. Taiyuan: Taiyuan University of Science and Technology, 2020: 41−42.
    [51] GB/T 6369—2008. 复合钢板力学及工艺性能试验方法[S]. 北京: 中国国家标准化管理委员会, 2008.

    GB/T6369—2008. Clad steel plates-mechanical and technological test[S].Beijing: Standardization Administration of the Peoples's Republic of China, 2008.
  • 加载中
图(5)
计量
  • 文章访问数:  164
  • HTML全文浏览量:  68
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-15
  • 刊出日期:  2022-11-01

目录

    /

    返回文章
    返回