留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Al含量对γ-TiAl合金断裂行为的影响

梁月慧 祁文军

梁月慧, 祁文军. Al含量对γ-TiAl合金断裂行为的影响[J]. 钢铁钒钛, 2022, 43(5): 99-105. doi: 10.7513/j.issn.1004-7638.2022.05.014
引用本文: 梁月慧, 祁文军. Al含量对γ-TiAl合金断裂行为的影响[J]. 钢铁钒钛, 2022, 43(5): 99-105. doi: 10.7513/j.issn.1004-7638.2022.05.014
Liang Yuehui, Qi Wenjun. Effect of Al content on fracture behavior of γ-TiAl alloy[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(5): 99-105. doi: 10.7513/j.issn.1004-7638.2022.05.014
Citation: Liang Yuehui, Qi Wenjun. Effect of Al content on fracture behavior of γ-TiAl alloy[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(5): 99-105. doi: 10.7513/j.issn.1004-7638.2022.05.014

Al含量对γ-TiAl合金断裂行为的影响

doi: 10.7513/j.issn.1004-7638.2022.05.014
基金项目: 新疆维吾尔自治区自然科学基金(2021D01C051)。
详细信息
    作者简介:

    梁月慧,1994年出生,女,汉族,江苏灌云人,硕士研究生,主要研究领域为金属材料分子动力学研究,E-mail:632975414@qq.com

    通讯作者:

    祁文军,1968年出生,女,汉族,新疆乌鲁木齐人,教授,硕士研究生导师,主要研究领域为材料加工领域中的数字化设计与制造、智能制造关键技术研发与应用,E-mail:wenjuntsi@163.com

  • 中图分类号: TF823,TG146

Effect of Al content on fracture behavior of γ-TiAl alloy

  • 摘要: 利用分子动力学研究了300 K温度下,Al含量在45%~49%范围内时,单晶γ-TiAl合金单轴拉伸的裂纹扩展机理和力学性能变化。分析了Al含量为45%的γ-TiAl合金拉伸过程中裂纹演变过程和Al含量在45%~49%时γ-TiAl合金的应力-应变曲线、总能量随时间变化曲线。研究表明:Al含量会影响材料的性能,Al含量为45%的γ-TiAl合金拉伸过程中产生的Lomer-Cottrell位错对裂纹的扩展行为也有很大影响。由于堆垛层错,位错和孔洞的产生及位错反应和运动,以及Al含量降低导致材料的屈服强度增加。Al含量在45%~49%范围内的γ-TiAl合金随Al含量减少,材料的屈服应力和弹性模量增大。
  • 图  1  γ-TiAl的L10晶体结构

    Figure  1.  L10 structure of γ-TiAl

    图  2  γ-TiAl合金的原子模型

    Figure  2.  Atom model of γ-TiAl alloy

    图  3  γ-Ti45 Al合金的原子模型

    Figure  3.  Atom model of γ-Ti45Al alloy

    图  4  不同时刻Ti45Al的原子运动轨迹

    Figure  4.  Atomic trajectories of Ti45Al at different moments

    图  5  罗曼-柯垂尔位错锁

    Figure  5.  Lomer Cottrell dislocation lock

    图  6  弛豫过程中总能量随时间的演变过程

    Figure  6.  Total energy as function of loading time during relaxation process

    图  7  拉伸过程中总能量随时间的演变

    Figure  7.  Total energy as function of loading time during tensile process

    图  8  不同Al含量的γ-TiAl合金的应力-应变曲线

    Figure  8.  Stress-strain curves of γ-TiAl alloys with different Al contents

    表  1  不同Al含量的γ-TiAl合金微观缺陷演变时间

    Table  1.   Evolution time of microdefects in γ-TiAl alloys with different Al contents

    合金
    成分
    第一个位错形核时间/ps发生变形时间/ps断裂时间/ps屈服应力/GPa
    Ti45Al205206.5220.512.24
    Ti46Al203207.321512.06
    Ti47Al197200.321211.75
    Ti48Al179.919520711.57
    Ti49Al177.217820611.22
    下载: 导出CSV
  • [1] Rui Zhiyuan, Zhang Guotao, Feng Ruicheng, et al. Study on microslip mechanism of single crystal γ-tial alloy[J]. Journal of Functional Materials, 2015,46(1):1103−1107. (芮执元, 张国涛, 冯瑞成, 等. 单晶γ-TiAl合金微观滑移机制的研究[J]. 功能材料, 2015,46(1):1103−1107. doi: 10.3969/j.issn.1001-9731.2015.01.021
    [2] Kastenhuber M, Rashkova B, Clemens H, et al. Effect of microstructural instability on the c-reep resistance of an advanced intermetallic γ-TiAl based alloy[J]. Intermetallics, 2017,80:1−9. doi: 10.1016/j.intermet.2016.09.007
    [3] Cao Dengqing, Bai Kunchao, Ding Hu, et al. Research progress on dynamics and vibration control of large flexible spacecraft[J]. Journal of Mechanics, 2019,51(1):1−13. (曹登庆, 白坤朝, 丁虎, 等. 大型柔性航天器动力学与振动控制研究进展[J]. 力学学报, 2019,51(1):1−13. doi: 10.6052/0459-1879-18-054
    [4] Feng R C, Rui Z Y, Zhang G T, et al. Improved method of fatigue life assessment for TiAl alloys[J]. Strength of Materials, 2014,46(2):183−189. doi: 10.1007/s11223-014-9534-x
    [5] Sabine, Decker, Janny, et al. Synthesis and mechani-cal properties of TiAl particle reinforced Ti-6Al-4V[J]. Materials Science & Engineering A, 2016,674:361−365.
    [6] Rodney R, Boyer M S. New titanium applications on the Boeing 777 airplane[J]. JOM Journal of the Minerals, Metals and Materials Society, 1992,44(5):23−25. doi: 10.1007/BF03223045
    [7] Clemens H, Mayer S. Design, processing, microstructure, properties, and applications of advanced intermetallic TiAl alloys[J]. Advanced Engineering Materials, 2013,15(4):191−215. doi: 10.1002/adem.201200231
    [8] Tetsui T. Manufacturing technology for gamma-TiAl alloy in current and future applications[J]. Rare Metals, 2011, 30(Supplement 1): 294-299.
    [9] 陈玉勇, 苏勇君, 孔凡涛. TiAl金属间化合物制备技术的研究进展[C]// 中国有色金属工业协会钛锆铪分会2013年会论文集. 北京: 中国有色金属工业协会, 2013.

    Chen Yuyong, Su Yongjun, Kong Fantao. Progress in preparation of TiAl intermetallic compounds[C]// Proceedings of the 2013 Annual Conference of Titanium, Zirconium and Hafnium Branch of China Non-ferrous Metals Industry Association. Beijing: China Non-ferrous Metals Industry Association, 2013.
    [10] Jia Hong, Lu Fusheng, Hao Bin. China titanium industry development report 2019[J]. Iron Steel Vanadium Titanium, 2020,41(3):1−7. (贾翃, 逯福生, 郝斌. 2019年中国钛工业发展报告[J]. 钢铁钒钛, 2020,41(3):1−7. doi: 10.7513/j.issn.1004-7638.2020.04.001
    [11] Qian Jiuhong, Qi Xuezhong. Research and application of TiAl(γ) based titanium alloy[J]. Rare Metals, 2002,4(6):477−482. (钱九红, 祁学忠. TiAl(γ)基钛合金的研究与应用[J]. 稀有金属, 2002,4(6):477−482. doi: 10.3969/j.issn.0258-7076.2002.06.015
    [12] Fang Zhou, Liu Xiaobo, Xu Qingjun. Molecular dynamics simulation of aluminum multi-hole evolution behavior[J]. Machinery Design & Manufacture, 2018,(1):32−35. (方洲, 刘晓波, 徐庆军. 铝多孔洞演变行为的分子动力模拟[J]. 机械设计与制造, 2018,(1):32−35. doi: 10.3969/j.issn.1001-3997.2018.01.010
    [13] Feng Ruicheng, Cao Hui, Li Haiyan, et al. Effects of vacancy concentration and temperature on mechanical properties of single-crystal γ-TiAl based on molecular dynamics simulation[J]. High Temperature Materials and Processes, 2018,37(2):113−220. doi: 10.1515/htmp-2016-0156
    [14] Takeuchi S, Kawamura T, Suzuki Y, et al. Molecul-ardynamics simulation of dislocation behavior in TiAl intermetallic compound[J]. Journal of the Japan Institute of Metals, 2015,79(8):413−418.
    [15] Zhang Ling, Luo DEchun, Bai Xiangxia, et al. Atomic simulation of fatigue crack propagation mechanism of single crystal γ-TiAl alloy[J]. Journal of Aviation Materials, 2018,38(1):88−94. (张玲, 罗德春, 白湘霞, 等. 单晶γ-TiAl合金疲劳裂纹扩展机制的原子模拟[J]. 航空材料学报, 2018,38(1):88−94. doi: 10.11868/j.issn.1005-5053.2017.000025
    [16] Guo Linkai, Wang Lei. Effect of temperature on deformation of nanoporous copper under high strain rate compression[J]. Computer Simulation, 2017,34(12):237−240, 278. (郭林凯, 王磊. 高应变率压缩下温度对纳米多孔铜变形的影响[J]. 计算机仿真, 2017,34(12):237−240, 278. doi: 10.3969/j.issn.1006-9348.2017.12.052
    [17] Zope R R, Mishin Y. Interatomic potentials for atomistic simulations of the Ti-Al system[J]. Physical Review B, 2003,68(2):366−369.
    [18] Abbott L J, Hart K E, Colina C M. Polymatic: a generalized simulated polymerization algorithm for amorphous polymers[J]. Theoretical Chemistry Accounts, 2013,132(3):1−19.
    [19] Hirel P. Atomsk: A tool for manipulating and converting atomic data files[J]. Computer Physics Communications, 2015:212−219.
    [20] Karnthaler H P. The study of glide on {001} planes in fcc metals deformed at room temperature[J]. Philosophical Magazine A, 1978,38(2):141−156. doi: 10.1080/01418617808239225
    [21] Stukowski, Alexander. Visualization and analysis of atomistic simulation data with OVITO the open visualization tool[J]. Modelling Simul. Mater. Sci. Eng., 2010,18(1):2154−2162.
    [22] Umeda H, Kishida K, Inui H, et al. Effects of Al-concentration and lamellar spacing on the room-temperature strength and ductility of PST crystals of TiAl[J]. Materials Science & Engineering A, 1997,239-240:336−343.
    [23] Zhang W J, Appel F. Effect of Al content and Nb addition on the strength and fault energy of TiAl alloys[J]. Materials Science & Engineering A, 2002,329(none):649−652.
    [24] Huang Yuanchun, Shao Hongbang, Xiao Zhengbing, et al. First-principles study of AlB2, TiB2 and TiAl3 in Al-Ti-B alloys[J]. China Journal of Nonferrous Metals, 2018,28(8):1491−1498. (黄元春, 邵虹榜, 肖政兵, 等. Al-Ti-B合金中AlB2、TiB2和TiAl3的第一性原理研究[J]. 中国有色金属学报, 2018,28(8):1491−1498.
    [25] Xing Shengdi. Electronic theory of anomalous mechanical properties of TiAl compounds[J]. Scientific Bulletin, 1991,36(5):72−75. (邢胜娣. TiAl化合物反常力学性能的电子理论[J]. 科学通报, 1991,36(5):72−75.
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  96
  • HTML全文浏览量:  11
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-02
  • 刊出日期:  2022-11-01

目录

    /

    返回文章
    返回