留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硅藻土对含钒废液中钒的吸附性能研究

孙宁 李俊翰

孙宁, 李俊翰. 硅藻土对含钒废液中钒的吸附性能研究[J]. 钢铁钒钛, 2022, 43(5): 111-116. doi: 10.7513/j.issn.1004-7638.2022.05.016
引用本文: 孙宁, 李俊翰. 硅藻土对含钒废液中钒的吸附性能研究[J]. 钢铁钒钛, 2022, 43(5): 111-116. doi: 10.7513/j.issn.1004-7638.2022.05.016
Sun Ning, Li Junhan. Research on adsorption properties of vanadium in vanadium-containing waste liquid by diatomite[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(5): 111-116. doi: 10.7513/j.issn.1004-7638.2022.05.016
Citation: Sun Ning, Li Junhan. Research on adsorption properties of vanadium in vanadium-containing waste liquid by diatomite[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(5): 111-116. doi: 10.7513/j.issn.1004-7638.2022.05.016

硅藻土对含钒废液中钒的吸附性能研究

doi: 10.7513/j.issn.1004-7638.2022.05.016
基金项目: 国家环境保护水土污染协同控制与联合修复重点实验室开放基金(GHBK-2020-009);四川大学-攀枝花市科技合作专项资金项目(2019CDPZH-6);攀枝花大学科技园种子资金项目(2019-23)。
详细信息
    作者简介:

    孙宁,1985年出生,男,讲师,硕士,主要从事矿物材料学的研究,E-mail:sunning11512@163.com

  • 中图分类号: X703,TF841.3

Research on adsorption properties of vanadium in vanadium-containing waste liquid by diatomite

  • 摘要: 湿法提钒工艺中会产生大量含钒废水,直接排放会造成环境污染和资源浪费。硅藻土具有比表面积大、孔隙多、密度小、吸附性能及渗透性较强等优点,广泛应用在环境治理领域。以硅藻土为吸附剂,采用静态吸附试验研究吸附时间、污染液初始浓度、pH值和硅藻土投入量对钒的吸附效果;对试验数据进行吸附热力学和动力学拟合,探究了吸附机理及特征。研究表明:硅藻土的主要成分是SiO2,含有少量蒙脱石和绿泥石,硅藻壳体为圆盘状,壳体表面有数量众多的微孔结构。热力学拟合中,硅藻土的吸附过程更符合Freundlich模型,R2为0.9010,属于多分子层吸附和表面吸附;动力学拟合中,准二级动力学模型的相关系数比准一级动力学模型高,R2为0.9954,说明吸附过程以化学吸附为主导。当吸附时间24 h,钒污染液初始浓度1 mg/L,污染液用量50 mL,pH值5,硅藻土投加量2 g时,去除率最优,达到98.21%。硅藻土对污染液中钒的吸附效果较好,可作为吸附剂治理钒污染。
  • 图  1  硅藻土的XRD谱图

    Figure  1.  XRD pattern of diatomite

    图  2  硅藻土的SEM图片

    Figure  2.  SEM images of diatomite

    图  3  吸附时间对吸附效果的影响

    Figure  3.  Effect of adsorption time on adsorption properties

    图  4  初始浓度对吸附效果的影响

    Figure  4.  Effect of initial concentration on adsorption properties

    图  5  pH值对吸附效果的影响

    Figure  5.  Effect of pH value on adsorption properties

    图  6  硅藻土投入量对吸附效果的影响

    Figure  6.  Effect of diatomite dosage on adsorption properties

    图  7  吸附等温方程式线性拟合曲线

    Figure  7.  Linear fitting curves of adsorption isothermal equation

    图  8  吸附动力学拟合曲线

    Figure  8.  Fitting curves of adsorption kinetic

  • [1] Du Guangchao. Research progress of vandium materials used in non-steel fields[J]. Iron Steel Vanadium Titanium, 2015,36(2):49−56. (杜光超. 钒在非钢铁领域应用的研究进展[J]. 钢铁钒钛, 2015,36(2):49−56. doi: 10.7513/j.issn.1004-7638.2015.02.009
    [2] Li Mei, Wang Qiang, Gao Hongwen, et al. Effect of vanadium content on properties of new high strength steel[J]. Iron Steel Vanadium Titanium, 2019,40(6):118−121,142. (李梅, 王强, 高宏文, 等. 钒含量对新型高强钢性能的影响[J]. 钢铁钒钛, 2019,40(6):118−121,142.
    [3] Peng Kebo, Gao Likun, Rao Bing, et al. Current status of vanadium resources and research progress on vanadium extraction with organic phosphorus extractants[J]. Chinese Journal of Engineering, 2021,43(5):603−611. (彭科波, 高利坤, 饶兵, 等. 钒资源现状及有机磷类萃取剂萃钒的研究进展[J]. 工程科学学报, 2021,43(5):603−611.
    [4] Du Weitong, Jiang Congxiang, Chen Zhuo, et al. Vanadium extraction by roasting from high chlorine and iron titanium tetrachloride tailings after vanadium removal[J]. Mining and Metallurgical Engineering, 2022,42(2):106−109. (堵伟桐, 姜丛翔, 陈卓, 等. 高氯高铁型四氯化钛除钒尾渣焙烧提钒工艺研究[J]. 矿冶工程, 2022,42(2):106−109. doi: 10.3969/j.issn.0253-6099.2022.02.026
    [5] Liu Zishuai, Zhang Yimin, Dai Zilin. Recovery of vanadium from vanadium-bearing wastewater of vanadium-titanium magnetite with solvent extraction by N235[J]. Nonferrous Metals (Extractive Metallurgy), 2019,(11):87−92. (刘子帅, 张一敏, 戴子林, 等. N235萃取法从钒钛磁铁矿沉钒废水中回收钒[J]. 有色金属(冶炼部分), 2019,(11):87−92.
    [6] Fu F L, Wang Q. Removal of heavy metal ions from wastewaters: A review[J]. Journal of Environmental Management, 2011,92(3):407−418. doi: 10.1016/j.jenvman.2010.11.011
    [7] Sun Pengcheng, Huang Zhanbin, Liu Luhan. The application pollution control in soil[J]. Environmental Engineering, 2015,33(7):144−147. (孙朋成, 黄占斌, 刘陆涵. 石棉尾矿渣在土壤重金属及农药污染治理中的应用[J]. 环境工程, 2015,33(7):144−147. doi: 10.13205/j.hjgc.201507032
    [8] Yuan Yawei, Li Yong. Research progress of ZSM-5 molecular sieve adsorbents used in pollution control[J]. Inorganic Chemicals Industry, 2019,51(10):18−21. (袁亚伟, 李勇. ZSM-5分子筛吸附剂应用于污染治理的研究进展[J]. 无机盐工业, 2019,51(10):18−21. doi: 10.11962/1006-4990.2018-0645
    [9] Kariana Moreno-Sader, Alvaro Garcia-Padilla, Alvaro Realpe, et al. Removal of heavy metal water pollutants(Co2+ and Ni2+ ) using polyacrylamide/sodium montmorillonite (PAM/Na-MMT) nanocomposites[J]. ACS Omega, 2019,4(6):10834−10844. doi: 10.1021/acsomega.9b00981
    [10] Ling Yulin, Zhou Jianhong, An Junlin, et al. Fabrication of BiOBr/RGO/diatomite and its photocatalytic degradation performance of formaldehyde gas under visible light[J]. Chinese Journal of Environmental Engineering, 2022,16(5):1558−1568. (令玉林, 周建红, 安俊霖, 等. BiOBr/RGO/硅藻土复合催化剂的制备及其在可见光条件下催化降解甲醛气体[J]. 环境工程学报, 2022,16(5):1558−1568. doi: 10.12030/j.cjee.202107126
    [11] 刘阳. 超声波—微波辅助酸浸提纯硅藻土的试验研究[D]. 北京: 中国矿业大学, 2016.

    Liu Yang. Study on acid leaching purification of diatomite assisted by ultrasonic and microwave[D]. Beijing:China University of Mining and Technology, 2016.
  • 加载中
图(8)
计量
  • 文章访问数:  88
  • HTML全文浏览量:  6
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-30
  • 刊出日期:  2022-11-01

目录

    /

    返回文章
    返回