Study on the effect of electric furnace steel slag-fly ash compound admixture on the properties of cement mortar
-
摘要: 将攀枝花钢城集团瑞钢公司产生的电炉钢渣球磨成微粉,复合粉煤灰制备电炉钢渣-粉煤灰复合掺合料,测定不同复合比例的水泥胶砂流动性,7 d和28 d抗折、抗压强度及活性,对28 d水泥胶砂试样进行了扫描电镜(SEM)、热重(TG)和差示扫描量热(DSC)测试。结果显示:电炉钢渣-粉煤灰复合掺合料流动度随着电炉钢渣含量的增加而降低,为保证流动度,建议电炉钢渣-粉煤灰复合掺合料中电炉钢渣含量不高于50%;电炉钢渣微粉活性比试验用市场粉煤灰好,电炉钢渣-粉煤灰复合掺合料中随着电炉钢渣含量的增加,强度和活性提高。Abstract: The electric furnace steel slag ball produced by Ruisteel Company of Panzhihua Steel City Group was used to grind into micropowder, and the composite fly ash was used to prepare the electric furnace steel slag–fly ash composite admixture. The fluidity, 7 d and 28 d bending, compressive strength and activity of cement mortar with different composite ratios were measured. Scanning electron microscopy (SEM), thermogravimetry (TG) and differential scanning calorimetry (DSC) tests were performed on 28 d cement mortar samples. The results show that the fluidity of the electric furnace steel slag–fly ash composite admixture decreases with the increase of the content of electric furnace steel slag. In order to ensure the fluidity, it is suggested that the content of electric furnace steel slag in the electric furnace steel slag–fly ash composite admixture is no more than 50%.The activity of electric furnace steel slag powder is better than that of fly ash. The strength and activity of electric furnace steel slag–fly ash composite admixture increase with the increase of the content of electric furnace steel slag.
-
Key words:
- electric furnace slag /
- fly ash /
- composite admixture /
- cement mortar /
- activity /
- thermal analysis /
- phase analysis
-
表 1 电炉钢渣成分
Table 1. The composition of electric furnace steel slag
% TFe Cl- SiO2 CaO MgO TiO2 P2O5 SO3 V2O5 Al2O3 fCaO− Pb Cr Na2O Cr2O3 Fe2O3 BaO MnO 27.05 0.019 11.23 26.95 2.89 7.47 0.634 0.50 1.90 5.59 0.16 <0.01 0.267 1.90 表 2 试验方案及配比
Table 2. Test scheme and mix ratio
分组 水泥/g 矿物掺合料/g ISO砂/g 水/g 备注
(掺合料组成)粉煤灰 电炉钢渣
微粉A0 450±2 0 0 1350±2 225±1 无掺合料、对照组 A 225±1 225±1 0 1350±2 225±1 单掺粉煤灰 B 225±1 168.75 56.25 1350±2 225±1 电炉钢渣微粉∶粉煤灰为1∶3 C 225±1 112.5 112.5 1350±2 225±1 电炉钢渣微粉∶粉煤灰为1∶1 D 225±1 56.25 168.75 1350±2 225±1 电炉钢渣微粉∶粉煤灰为3∶1 E 315±1 0 135±1 1350±2 225±1 单掺电炉钢渣微粉 表 3 流动度试验数据
Table 3. Fluidity test data
序号 分组 横向/cm 纵向/cm 平均流动度/cm 流动比/% 备注 1 A0 21.2 20.3 20.75 100.00 无掺合料、对照组 2 A 25.6 26.1 25.85 124.58 单掺粉煤灰 3 B 24.6 24.2 24.4 117.59 电炉钢渣微粉∶粉煤灰为1∶3 4 C 24 23.5 23.75 114.46 电炉钢渣微粉∶粉煤灰为1∶1 5 D 19.8 19.8 19.8 95.42 电炉钢渣微粉∶粉煤灰为3∶1 6 E 19.2 19.2 19.2 92.53 单掺电炉钢渣微粉 表 4 抗折、抗压强度及活性指数
Table 4. Flexural strength, compressive strength and activity index
序号 分组 7 d抗折强度/MPa 7 d抗压强度/MPa 28 d抗折强度/MPa 28 d抗压强度/MPa 7 d活性/% 28 d活性/% 备注 1 A0 6.26 40.6 7.15 39.60 100.00 100.00 无掺合料 2 A 3.70 16.5 4.79 20.58 40.60 51.96 单掺粉煤灰 3 B 3.44 16.2 5.15 25.37 39.92 64.06 电炉钢渣微粉∶粉煤灰为1∶3 4 C 3.17 14.5 5.45 27.68 35.79 69.89 电炉钢渣微粉∶粉煤灰为1∶1 5 D 3.50 17.1 5.79 29.03 42.04 73.30 电炉钢渣微粉∶粉煤灰为3∶1 6 E 5.16 29.1 6.96 37.46 71.69 94.60 单掺电炉钢渣微粉 -
[1] Huang Shuanghua, Chen Wei, Sun Jinkun, et al. The application of high titanium slag in concrete materials[J]. New Building Materials, 2006,(11):71−73. (黄双华, 陈伟, 孙金坤, 等. 高钛高炉渣在混凝土材料中的应用[J]. 新型建筑材料, 2006,(11):71−73. doi: 10.3969/j.issn.1001-702X.2006.11.025 [2] Wang Jie, Zhao Bijian, Zhang Guiyu. Development and application of high-titanium slag series building materials[J]. New Building Materials, 2002,(2):35−36. (王杰, 赵碧建, 张桂玉. 高钛渣系列建材产品的开发及应用[J]. 新型建筑材料, 2002,(2):35−36. doi: 10.3969/j.issn.1001-702X.2002.02.016 [3] Jiang Haimin, Mou Tingmin, Ding Qingjun. Study on the working performance of high titanium heavy slag concrete[J]. Concrete, 2011,(5):125−127. (江海民, 牟廷敏, 丁庆军. 高钛重矿渣混凝土的工作性能研究[J]. 混凝土, 2011,(5):125−127. doi: 10.3969/j.issn.1002-3550.2011.05.042 [4] Wang Jie. Experimental analysis on recycled concrete with high titanium heavy slag and bond properties of steel bars[J]. Revista de la Facultad de Ingeniería, 2017,32(10):204−210. [5] Yang Zhiyuan, Yao Zengyuan. Development of fast gunning mass for vanadium recovering converter and its application[J]. Sichuan Metallurgy, 2019,41(4):51−54. (杨志远, 姚增远. 一种高钛型高炉渣复合掺合料的研究及应用[J]. 四川冶金, 2019,41(4):51−54. doi: 10.3969/j.issn.1001-5108.2019.04.014 [6] Chen Lin, Pan Ruyi, Shen Xiaodong, et al. Strength and hydration property of fly ash-slag-cement composite cementitious material[J]. Journal of Building Materials, 2010,13(3):380−384. (陈琳, 潘如意, 沈晓冬, 等. 粉煤灰-矿渣-水泥复合胶凝材料强度和水化性能[J]. 建筑材料学报, 2010,13(3):380−384. doi: 10.3969/j.issn.1007-9629.2010.03.022 [7] 关少波. 钢渣粉活性与胶凝性及其混凝土性能的研究[D]. 武汉: 武汉理工大学, 2008.Guan Shaobo. Research on active & cementitious capacity of steel-making slag and its concrete properties[D]. Wuhan: Wuhan University of Technology, 2008. [8] Zeng Mei, Chen Rong. Effect of steel slagpow der and composite admixture on mechanical properties of self-compacting concrete[J]. Concrete, 2020,4(6):70−72,78. (曾梅, 陈荣. 基于钢渣微粉及复合掺合料对自密实混凝土力学性能的影响研究[J]. 混凝土, 2020,4(6):70−72,78. doi: 10.3969/j.issn.1002-3550.2020.06.016 [9] Yang Qianrong, Yang Quanbing. Effects of compound mineral admixture with steel slag on durability of concrete[J]. Journal of Tongji University (Natural Science), 2010,38(8):1200−1204. (杨钱荣, 杨全兵. 含钢渣复合掺合料对混凝土耐久性的影响[J]. 同济大学学报(自然科学版), 2010,38(8):1200−1204. doi: 10.3969/j.issn.0253-374x.2010.08.018 [10] Cui Hongjun. Study on preparation of concrete composite admixture from steel slag powder and limestone powder[J]. Sichuan Cement, 2017,(7):10−11. (崔红军. 钢渣粉和石灰石粉制备混凝土复合掺合料的研究[J]. 四川水泥, 2017,(7):10−11. doi: 10.3969/j.issn.1007-6344.2017.07.010 [11] Yu Huiyong, Li Chen, Yu Xiaoliang, et al. Influence of multicomponent composite mineral admixture on the work ability and strength of cement mortar[J]. Building Materials to the World, 2019,40(5):26−31. (于会泳, 李晨, 余晓亮, 等. 多元复合矿物掺合料对水泥胶砂工作性和强度的影响[J]. 建材世界, 2019,40(5):26−31. [12] Yao Zengyuan. Research on the application of a kind of electric furnace steel slag in concrete[J]. Cement Engineering, 2021,4(2):90−92. (姚增远. 一种电炉钢渣在混凝土中的应用研究[J]. 水泥工程, 2021,4(2):90−92. doi: 10.13697/j.cnki.32-1449/tu.2021.02.034 [13] Wang Wei, Wang Jie, Liang Yuehua. High-titanium heavy slag concrete with electric furnace steel slag powder as admixture[J]. Iron Steel Vanadium Titanium, 2021,42(4):79−84. (王伟, 汪杰, 梁月华. 电炉钢渣微粉取代粉煤灰配制高钛重矿渣混凝土的试验研究[J]. 钢铁钒钛, 2021,42(4):79−84. doi: 10.7513/j.issn.1004-7638.2021.04.014 [14] 姚增远, 王彬, 游平全, 等. 以渣钢铁电炉钢渣作为混凝土掺合料的方法: 中国, CN110698100A[P]. 2019-11-12.Yao Zengyuan, Wang Bin, You Pingquan, et al. The method of taking steel slag of slag iron and steel electric furnace as concrete admixture: China, CN110698100A[P]. 2019-11-12 [15] Yang Ruihai, Lu Wenxiong, Yu Shuhua, et al. Performance influence of composite nano-materials on concrete and cement mortar[J]. Journal of Chongqing Jianzhu University, 2007,(5):144−148. (杨瑞海, 陆文雄, 余淑华, 等. 复合纳米材料对混凝土及水泥砂浆的性能影响[J]. 重庆建筑大学学报, 2007,(5):144−148. [16] Yang Ruihai, Lu Wenxiong. Research on the influence of composite nano-materials and admixtures on concrete[J]. Cement Engineering, 2008,(1):16−19,23. (杨瑞海, 陆文雄. 复合纳米材料和复合掺合料对混凝土性能影响的研究[J]. 水泥工程, 2008,(1):16−19,23. doi: 10.3969/j.issn.1007-0389.2008.01.003 [17] Yan Hanjun. Influence of composite nano-material on performance of concrete and cement mortar[J]. Material Review, 2008,22(S2):167−170. (颜汉军. 复合纳米材料对混凝土及水泥砂浆性能的影响[J]. 材料导报, 2008,22(S2):167−170. doi: 10.3321/j.issn:1005-023X.2008.Z2.050