留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电炉钢渣-粉煤灰复合掺合料水泥胶砂性能研究

汪杰 梁月华

汪杰, 梁月华. 电炉钢渣-粉煤灰复合掺合料水泥胶砂性能研究[J]. 钢铁钒钛, 2022, 43(5): 123-128. doi: 10.7513/j.issn.1004-7638.2022.05.018
引用本文: 汪杰, 梁月华. 电炉钢渣-粉煤灰复合掺合料水泥胶砂性能研究[J]. 钢铁钒钛, 2022, 43(5): 123-128. doi: 10.7513/j.issn.1004-7638.2022.05.018
Wang Jie, Liang Yuehua. Study on the effect of electric furnace steel slag-fly ash compound admixture on the properties of cement mortar[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(5): 123-128. doi: 10.7513/j.issn.1004-7638.2022.05.018
Citation: Wang Jie, Liang Yuehua. Study on the effect of electric furnace steel slag-fly ash compound admixture on the properties of cement mortar[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(5): 123-128. doi: 10.7513/j.issn.1004-7638.2022.05.018

电炉钢渣-粉煤灰复合掺合料水泥胶砂性能研究

doi: 10.7513/j.issn.1004-7638.2022.05.018
基金项目: 四川省科技计划项目(2020JDRC0137);钒钛资源综合利用四川省重点实验室项目(2021FTSZ15)
详细信息
    作者简介:

    汪杰,1988年出生,男,四川乐山人,硕导,博士生,讲师,工程师,攀枝花市学术技术带头人后备人选,长期从事大宗工业固态废弃物土木工程综合利用研究工作,E-mail:wangjie542925605@126.com

  • 中图分类号: X757,TU521

Study on the effect of electric furnace steel slag-fly ash compound admixture on the properties of cement mortar

  • 摘要: 将攀枝花钢城集团瑞钢公司产生的电炉钢渣球磨成微粉,复合粉煤灰制备电炉钢渣-粉煤灰复合掺合料,测定不同复合比例的水泥胶砂流动性,7 d和28 d抗折、抗压强度及活性,对28 d水泥胶砂试样进行了扫描电镜(SEM)、热重(TG)和差示扫描量热(DSC)测试。结果显示:电炉钢渣-粉煤灰复合掺合料流动度随着电炉钢渣含量的增加而降低,为保证流动度,建议电炉钢渣-粉煤灰复合掺合料中电炉钢渣含量不高于50%;电炉钢渣微粉活性比试验用市场粉煤灰好,电炉钢渣-粉煤灰复合掺合料中随着电炉钢渣含量的增加,强度和活性提高。
  • 图  1  流动度状况

    Figure  1.  Fluidity condition

    图  2  A0及A~E组热谱(28 d)

    Figure  2.  Thermal spectra of samples of A0 and A–E group (28 d)

    图  3  A0及A~E组(28 d)SEM微观形貌

    Figure  3.  SEM morphology of samples of A0 and A–E group (28 d)

    表  1  电炉钢渣成分

    Table  1.   The composition of electric furnace steel slag %

    TFeCl-SiO2CaOMgOTiO2P2O5SO3V2O5Al2O3fCaOPbCrNa2OCr2O3Fe2O3BaOMnO
    27.050.01911.2326.952.897.470.6340.501.905.590.16<0.010.2671.90
    下载: 导出CSV

    表  2  试验方案及配比

    Table  2.   Test scheme and mix ratio

    分组水泥/g矿物掺合料/gISO砂/g水/g备注
    (掺合料组成)
    粉煤灰电炉钢渣
    微粉
    A0450±2001350±2225±1无掺合料、对照组
    A225±1225±101350±2225±1单掺粉煤灰
    B225±1168.7556.251350±2225±1电炉钢渣微粉∶粉煤灰为1∶3
    C225±1112.5112.51350±2225±1电炉钢渣微粉∶粉煤灰为1∶1
    D225±156.25168.751350±2225±1电炉钢渣微粉∶粉煤灰为3∶1
    E315±10135±11350±2225±1单掺电炉钢渣微粉
    下载: 导出CSV

    表  3  流动度试验数据

    Table  3.   Fluidity test data

    序号分组横向/cm纵向/cm平均流动度/cm流动比/%备注
    1A021.220.320.75100.00无掺合料、对照组
    2A25.626.125.85124.58单掺粉煤灰
    3B24.624.224.4117.59电炉钢渣微粉∶粉煤灰为1∶3
    4C2423.523.75114.46电炉钢渣微粉∶粉煤灰为1∶1
    5D19.819.819.895.42电炉钢渣微粉∶粉煤灰为3∶1
    6E19.219.219.292.53单掺电炉钢渣微粉
    下载: 导出CSV

    表  4  抗折、抗压强度及活性指数

    Table  4.   Flexural strength, compressive strength and activity index

    序号分组7 d抗折强度/MPa7 d抗压强度/MPa28 d抗折强度/MPa28 d抗压强度/MPa7 d活性/%28 d活性/%备注
    1A06.2640.67.1539.60100.00100.00无掺合料
    2A3.7016.54.7920.5840.6051.96单掺粉煤灰
    3B3.4416.25.1525.3739.9264.06电炉钢渣微粉∶粉煤灰为1∶3
    4C3.1714.55.4527.6835.7969.89电炉钢渣微粉∶粉煤灰为1∶1
    5D3.5017.15.7929.0342.0473.30电炉钢渣微粉∶粉煤灰为3∶1
    6E5.1629.16.9637.4671.6994.60单掺电炉钢渣微粉
    下载: 导出CSV
  • [1] Huang Shuanghua, Chen Wei, Sun Jinkun, et al. The application of high titanium slag in concrete materials[J]. New Building Materials, 2006,(11):71−73. (黄双华, 陈伟, 孙金坤, 等. 高钛高炉渣在混凝土材料中的应用[J]. 新型建筑材料, 2006,(11):71−73. doi: 10.3969/j.issn.1001-702X.2006.11.025
    [2] Wang Jie, Zhao Bijian, Zhang Guiyu. Development and application of high-titanium slag series building materials[J]. New Building Materials, 2002,(2):35−36. (王杰, 赵碧建, 张桂玉. 高钛渣系列建材产品的开发及应用[J]. 新型建筑材料, 2002,(2):35−36. doi: 10.3969/j.issn.1001-702X.2002.02.016
    [3] Jiang Haimin, Mou Tingmin, Ding Qingjun. Study on the working performance of high titanium heavy slag concrete[J]. Concrete, 2011,(5):125−127. (江海民, 牟廷敏, 丁庆军. 高钛重矿渣混凝土的工作性能研究[J]. 混凝土, 2011,(5):125−127. doi: 10.3969/j.issn.1002-3550.2011.05.042
    [4] Wang Jie. Experimental analysis on recycled concrete with high titanium heavy slag and bond properties of steel bars[J]. Revista de la Facultad de Ingeniería, 2017,32(10):204−210.
    [5] Yang Zhiyuan, Yao Zengyuan. Development of fast gunning mass for vanadium recovering converter and its application[J]. Sichuan Metallurgy, 2019,41(4):51−54. (杨志远, 姚增远. 一种高钛型高炉渣复合掺合料的研究及应用[J]. 四川冶金, 2019,41(4):51−54. doi: 10.3969/j.issn.1001-5108.2019.04.014
    [6] Chen Lin, Pan Ruyi, Shen Xiaodong, et al. Strength and hydration property of fly ash-slag-cement composite cementitious material[J]. Journal of Building Materials, 2010,13(3):380−384. (陈琳, 潘如意, 沈晓冬, 等. 粉煤灰-矿渣-水泥复合胶凝材料强度和水化性能[J]. 建筑材料学报, 2010,13(3):380−384. doi: 10.3969/j.issn.1007-9629.2010.03.022
    [7] 关少波. 钢渣粉活性与胶凝性及其混凝土性能的研究[D]. 武汉: 武汉理工大学, 2008.

    Guan Shaobo. Research on active & cementitious capacity of steel-making slag and its concrete properties[D]. Wuhan: Wuhan University of Technology, 2008.
    [8] Zeng Mei, Chen Rong. Effect of steel slagpow der and composite admixture on mechanical properties of self-compacting concrete[J]. Concrete, 2020,4(6):70−72,78. (曾梅, 陈荣. 基于钢渣微粉及复合掺合料对自密实混凝土力学性能的影响研究[J]. 混凝土, 2020,4(6):70−72,78. doi: 10.3969/j.issn.1002-3550.2020.06.016
    [9] Yang Qianrong, Yang Quanbing. Effects of compound mineral admixture with steel slag on durability of concrete[J]. Journal of Tongji University (Natural Science), 2010,38(8):1200−1204. (杨钱荣, 杨全兵. 含钢渣复合掺合料对混凝土耐久性的影响[J]. 同济大学学报(自然科学版), 2010,38(8):1200−1204. doi: 10.3969/j.issn.0253-374x.2010.08.018
    [10] Cui Hongjun. Study on preparation of concrete composite admixture from steel slag powder and limestone powder[J]. Sichuan Cement, 2017,(7):10−11. (崔红军. 钢渣粉和石灰石粉制备混凝土复合掺合料的研究[J]. 四川水泥, 2017,(7):10−11. doi: 10.3969/j.issn.1007-6344.2017.07.010
    [11] Yu Huiyong, Li Chen, Yu Xiaoliang, et al. Influence of multicomponent composite mineral admixture on the work ability and strength of cement mortar[J]. Building Materials to the World, 2019,40(5):26−31. (于会泳, 李晨, 余晓亮, 等. 多元复合矿物掺合料对水泥胶砂工作性和强度的影响[J]. 建材世界, 2019,40(5):26−31.
    [12] Yao Zengyuan. Research on the application of a kind of electric furnace steel slag in concrete[J]. Cement Engineering, 2021,4(2):90−92. (姚增远. 一种电炉钢渣在混凝土中的应用研究[J]. 水泥工程, 2021,4(2):90−92. doi: 10.13697/j.cnki.32-1449/tu.2021.02.034
    [13] Wang Wei, Wang Jie, Liang Yuehua. High-titanium heavy slag concrete with electric furnace steel slag powder as admixture[J]. Iron Steel Vanadium Titanium, 2021,42(4):79−84. (王伟, 汪杰, 梁月华. 电炉钢渣微粉取代粉煤灰配制高钛重矿渣混凝土的试验研究[J]. 钢铁钒钛, 2021,42(4):79−84. doi: 10.7513/j.issn.1004-7638.2021.04.014
    [14] 姚增远, 王彬, 游平全, 等. 以渣钢铁电炉钢渣作为混凝土掺合料的方法: 中国, CN110698100A[P]. 2019-11-12.

    Yao Zengyuan, Wang Bin, You Pingquan, et al. The method of taking steel slag of slag iron and steel electric furnace as concrete admixture: China, CN110698100A[P]. 2019-11-12
    [15] Yang Ruihai, Lu Wenxiong, Yu Shuhua, et al. Performance influence of composite nano-materials on concrete and cement mortar[J]. Journal of Chongqing Jianzhu University, 2007,(5):144−148. (杨瑞海, 陆文雄, 余淑华, 等. 复合纳米材料对混凝土及水泥砂浆的性能影响[J]. 重庆建筑大学学报, 2007,(5):144−148.
    [16] Yang Ruihai, Lu Wenxiong. Research on the influence of composite nano-materials and admixtures on concrete[J]. Cement Engineering, 2008,(1):16−19,23. (杨瑞海, 陆文雄. 复合纳米材料和复合掺合料对混凝土性能影响的研究[J]. 水泥工程, 2008,(1):16−19,23. doi: 10.3969/j.issn.1007-0389.2008.01.003
    [17] Yan Hanjun. Influence of composite nano-material on performance of concrete and cement mortar[J]. Material Review, 2008,22(S2):167−170. (颜汉军. 复合纳米材料对混凝土及水泥砂浆性能的影响[J]. 材料导报, 2008,22(S2):167−170. doi: 10.3321/j.issn:1005-023X.2008.Z2.050
  • 加载中
图(3) / 表(4)
计量
  • 文章访问数:  64
  • HTML全文浏览量:  6
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-11
  • 刊出日期:  2022-11-01

目录

    /

    返回文章
    返回