留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铁水脱硫偏心搅拌的模拟研究

郁青春 刘志平 阴树标 张送来

郁青春, 刘志平, 阴树标, 张送来. 铁水脱硫偏心搅拌的模拟研究[J]. 钢铁钒钛, 2022, 43(5): 129-135. doi: 10.7513/j.issn.1004-7638.2022.05.019
引用本文: 郁青春, 刘志平, 阴树标, 张送来. 铁水脱硫偏心搅拌的模拟研究[J]. 钢铁钒钛, 2022, 43(5): 129-135. doi: 10.7513/j.issn.1004-7638.2022.05.019
Yu Qingchun, Liu Zhiping, Yin Shubiao, Zhang Songlai. Simulation study on the eccentric stirring of hot metal desulfurization[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(5): 129-135. doi: 10.7513/j.issn.1004-7638.2022.05.019
Citation: Yu Qingchun, Liu Zhiping, Yin Shubiao, Zhang Songlai. Simulation study on the eccentric stirring of hot metal desulfurization[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(5): 129-135. doi: 10.7513/j.issn.1004-7638.2022.05.019

铁水脱硫偏心搅拌的模拟研究

doi: 10.7513/j.issn.1004-7638.2022.05.019
基金项目: 国家自然科学基金(51864025)资助项目
详细信息
    作者简介:

    郁青春,1971年出生,男,博士,教授,主要从事冶金二次资源综合利用方面的研究,E-mail:yqcy@163.com

    通讯作者:

    刘志平,1969年出生,男,博士,正高级工程师,主要从事亚稳态材料制备方面的研究,E-mail:relzp@163.com

  • 中图分类号: TF535.2

Simulation study on the eccentric stirring of hot metal desulfurization

  • 摘要: 以铁水罐实际尺寸为基础,按一定比例建立物理模型,对KR法脱硫偏心搅拌进行物理模拟。利用CFD软件,结合VOF多相流模型、标准k-ɛ湍流模型和多重参考系法(MRF)对偏心搅拌铁水脱硫过程进行数值模拟。研究发现,偏心搅拌时漩涡形状呈倒锥形,漩涡深度极大值位于搅拌槽中心位置。搅拌轴距侧壁较近处流体运动强烈,且沿上下两个方向运动;较远处流体运动缓慢,搅拌桨末端流体平均速度约为较远处的2倍。偏心搅拌能改变搅拌器底部流体运动状态,减少“死区”。当搅拌转速由120 r/min增加到200 r/min时,流体平均速度约增加68%,高速流体体积占比略有降低,从60.4%降至57.9%。偏心搅拌易于在工业上实现,转速增加有利于脱硫剂的扩散,但最佳转速应考虑经济性与安全性。
  • 图  1  水模型试验装置

    Figure  1.  Schematic diagram of water model experiment

    图  2  搅拌槽网格

    Figure  2.  Grid map of stirring tank

    图  3  不同转速下数值模拟与水模型试验对比

    Figure  3.  Comparison of numerical simulation and water model test with different stirring speeds

    图  4  水平截面流场分布

    Figure  4.  Flow field distribution diagram of horizontal section

    图  5  浸入深度217.5 mm时不同搅拌转速下流场分布

    Figure  5.  Flow field distribution at different mixing speeds with immersion depth of 217.5 mm

    图  6  中心搅拌与偏心搅拌流场

    Figure  6.  Flow fields of central stirring and eccentral stirring

    图  7  Z= −0.1 m处速度分布

    Figure  7.  Velocity distribution when Z=−0.1 m

    图  8  Y= −0.1 m处速度分布

    Figure  8.  Velocity distribution when Y=−0.1 m

    图  9  Y= 0.075 m处速度分布

    Figure  9.  Velocity distribution when Y=0.075 m

    图  10  速度累积曲线

    Figure  10.  Velocity accumulation curves

  • [1] Gong Hongjun, Liang Xinteng, Zhou Zunchuan, et al. Application of rotary injection desulfurization technology in hot metal pretreatment[J]. Iron Steel Vanadium Titaniumm, 2020,41(1):173−178. (龚洪君, 梁新腾, 周遵传, 等. 旋转喷吹脱硫技术在铁水预处理上的应用研究[J]. 钢铁钒钛, 2020,41(1):173−178. doi: 10.7513/j.issn.1004-7638.2020.01.030
    [2] Zhang Maolin, Xu Anjun. Comparison of application of KR method with that of injection method in hot metal desulphurization[J]. Steelmaking, 2009,25(5):73−77. (张茂林, 徐安军. KR法与喷吹法在铁水脱硫中应用的比较[J]. 炼钢, 2009,25(5):73−77.
    [3] Yao Na, Xing Chao, Li Xiangsheng. Effect of hot metal desulfurization factors in KR method[J]. Journal of Materials and Metallurgy, 2010,9(3):164−167. (姚娜, 兴超, 李祥胜. KR法铁水脱硫效果的影响因素分析[J]. 材料与冶金学报, 2010,9(3):164−167. doi: 10.3969/j.issn.1671-6620.2010.03.002
    [4] Dong Jiapeng, Zhang Lifeng, Zhao Yanyu, et al. Mixing phenomena of hot metal in KR desulfurization process using water modeling[J]. Journal of Iron and Steel Research, 2021,33(2):103−109. (董佳鹏, 张立峰, 赵艳宇, 等. KR法铁水脱硫过程铁水混合现象的水模型[J]. 钢铁研究学报, 2021,33(2):103−109.
    [5] Yan Fengyi, Song Mantang, Zhang Guiyu, et al. Optimization of desulphurization with based reagent.[J]. Iron and Steel, 2003,38(2):13−15. (阎凤义, 宋满堂, 张贵玉, 等. 镁基粉剂脱硫工艺优化与实践[J]. 钢铁, 2003,38(2):13−15. doi: 10.3321/j.issn:0449-749X.2003.02.004
    [6] He M L, Wang N, Chen M, et al. Distribution and motion behavior of desulfurizer particles in hot metal with mechanical stirring[J]. Powder Technology, 2020,361(1):455−461.
    [7] Ji J H, Liang R Q, He J C. Simulation on mixing behavior of desulfurizer and high-sulfur hot metal based on variable-velocity stirring[J]. ISIJ International, 2016,56(5):794−802. doi: 10.2355/isijinternational.ISIJINT-2015-549
    [8] 闵昌飞. KR法铁水脱硫的流体流动特性研究[D]. 武汉: 武汉科技大学, 2021.

    Min Changfei. Study on fluid flow characteristics of KR hot metal desulfurization[D]. Wuhan: Wuhan University of Science and Technology, 2021.
    [9] 田广亚, 徐强, 闵通宏, 等. KR法铁水脱硫水模型试验研究 [C]. 第四届冶金工程科学论坛论文集. 2005: 102-106.

    Tian Guangya, Xu Qiang, Min Tonghong, et al. Research on water modeling in KR desulfurization of hot metal [C]//Proceedings of the 4th Metallurgical Engineering Science Forum. 2005: 102-106.
    [10] Li Meiting, Li Wei, Li Xiaoguang, et al. Laminar flow field characteristics in the stirred vessel equipped with an eccentric-shaft impeller[J]. Journal of Shandong University (Engineering Science), 2019,49(4):93−98,107. (李美婷, 李威, 李晓光, 等. 偏心轴搅拌槽内的层流流场特性[J]. 山东大学学报(工学版), 2019,49(4):93−98,107.
    [11] Bi Huafei, Zhou Kun, Huang Xiongbin. Flow, suspension and mixing characteristics of eccentric stirring[J]. The Chinese Journal of Process Engineering, 2017,17(1):52−57. (毕华飞, 周坤, 黄雄斌. 偏心搅拌的流动、悬浮和混合特性[J]. 过程工程学报, 2017,17(1):52−57. doi: 10.12034/j.issn.1009-606X.216244
    [12] Liu Y, Zhang T A, Sano M, et al. Mechanical stirring for highly efficient gas injection refining[J]. Transaction Nonferrous Metals Society of China, 2011,21:1896−1904. doi: 10.1016/S1003-6326(11)60947-3
    [13] Liu Yan, Zhang Ting, an, Du Jingyao, et al. Numerical simulation of gas bubble disintegration and dispersion process in liquid[J]. The Chinese Journal of Process Engineering, 2009,9(S1):400−404. (刘燕, 张廷安, 杜靖尧, 等. 流体中气泡微细化与分散过程的数值模拟[J]. 过程工程学报, 2009,9(S1):400−404. doi: 10.3321/j.issn:1009-606X.2009.z1.088
    [14] Yang Fengling, Zhou Shenjie, Zhang Cuixun, et al. Study on the solid-liquid suspension in eccentrically stirred tanks[J]. J. Huazhong University of Science & Technology (Natural Science Edition), 2012,40(11):22−26. (杨锋苓, 周慎杰, 张翠勋, 等. 偏心搅拌槽内固-液悬浮特性研究[J]. 华中科技大学学报(自然科学版), 2012,40(11):22−26.
    [15] Zeng Tong. Water modeling experiment of KR mechanical stirring desulfurization tank[J]. Metallurgical Information Review, 2007,(3):27−29. (曾彤. 铁水罐KR机械搅拌式脱硫水模试验研究及应用[J]. 冶金信息导刊, 2007,(3):27−29. doi: 10.3969/j.issn.1008-3618.2007.03.008
    [16] Wang Weilong, Liu Xing, Sun Tongyun. Research of laminar stirred tank[J]. Petrochemical Industry Technology, 2017,24(12):91−94. (王伟龙, 刘欣, 孙桐运. 层流搅拌槽研究方法及研究现状[J]. 石化技术, 2017,24(12):91−94. doi: 10.3969/j.issn.1006-0235.2017.12.069
    [17] Chen S Y, Zhang T, Lv L, et al. Intensification of the liquid side mass transfer in double-side falling film microchannels by micro-mixing structures[J]. Chemical Engineering Science, 2019,193:264−275. doi: 10.1016/j.ces.2018.09.016
    [18] 韩占忠. Fluent: 流体工程仿真计算实例与分析[M]. 北京: 北京理工大学出版社, 2009.

    Han Zhanzhong. Example and analysis of fluid engineering simulation[M]. Beijing: Beijing University of Technology Press, 2009.
    [19] Syrjanen J K, Manninen M T. Detailed CFD prediction of flow around a 45° pitched blad turbine[C]// Proceedings of 10th European Conference on Mixing. Delft. 2000: 265-272.
    [20] Zhu Huateng, Chen Guanghui, Wang Weiwen. Numerical simulation and analysis of secondary vortex in different cyclone separators[J]. Journal of Chemical Engineering of Chinese Universities, 2017,31(5):1062−1071. (祝华腾, 陈光辉, 王伟文, 等. 不同结构的旋风分离器二次涡的数值模拟和分析[J]. 高校化学工程学报, 2017,31(5):1062−1071. doi: 10.3969/j.issn.1003-9015.2017.05.007
    [21] Ma Qingshan, Feng Lianfang, Gu Xueping, et al. Power consumption for powder in horizonal agitated reactor[J]. Journal of Chemical Engineering of Chinese Universities, 1999,13(1):31−37. (马青山, 冯连芳, 顾雪萍, 等. 卧式单轴粉体搅拌反应器的搅拌功率[J]. 高校化学工程学报, 1999,13(1):31−37. doi: 10.3321/j.issn:1003-9015.1999.01.006
    [22] Chen Xinde, Sun Jianglong, Zhou Jiajian, et al. Numerical simulation analysis of the flow during hot metal desulfurization by KR method[J]. Journal of Wuhan University of Science and Technology, 2015,38(5):330−335. (程新德, 孙江龙, 周家健, 等. KR法铁水脱硫的流动数值模拟分析[J]. 武汉科技大学学报, 2015,38(5):330−335.
  • 加载中
图(10)
计量
  • 文章访问数:  70
  • HTML全文浏览量:  14
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-04
  • 刊出日期:  2022-11-01

目录

    /

    返回文章
    返回