Effect of electroplating time and temperature on hydrogen diffusion coefficient of U78CrV steel
-
摘要: 氢能使钢材产生氢脆,导致材料的力学性能降低。而氢原子对钢的危害作用由扩散产生,因此了解氢原子在钢中的扩散行为对防治氢鼓泡和氢脆有重要意义。利用电化学氢渗透技术,施加恒定阴极电流,分别通过改变试样电镀时间、试验温度,对U78CrV钢进行氢渗透参数的研究。分析了不同电镀时间、不同试验温度对U78CrV钢的氢扩散系数的影响。研究结果表明:电镀时间过短和过长都会使得阳极极化电流降低,影响氢原子电离形成氢离子,当电镀时间360 s时形成的镍层效果最好。试验温度的升高会提高氢的渗透量和氢扩散系数,氢在U78CrV钢的扩散激活能为19 371 J/mol,氢扩散系数与温度的关系式为
$ \mathit{D}=3.14\times {10}^{-3}\exp\left(-\dfrac{19\;371}{\mathit{R}\mathit{T}}\right) $ 。Abstract: Hydrogen can cause hydrogen embrittlement of steel, resulting in a decrease in the material's mechanical properties. The harmful effect of hydrogen atoms on steel is caused by diffusion. Therefore, understanding the diffusion behavior of hydrogen atoms in steel is significant in preventing hydrogen bubbling and embrittlement. In this paper, electrochemical hydrogen permeation technology is used, a constant cathode current is applied, and the hydrogen permeation parameters of U78CrV steel are studied by changing the sample plating time and test temperature, respectively. The influence of different plating times and test temperatures on the hydrogen diffusion coefficient of U78CrV steel is analyzed. The research results show that too short and too long electroplating time will reduce the anodic polarization current and affect the ionization of hydrogen atoms to form hydrogen ions. When the electroplating time is 360 seconds, the nickel layer formed has the best effect. The increase in the test temperature will increase the hydrogen permeability and diffusion coefficient. The activation energy of hydrogen diffusion in U78CrV steel is 19371 J/mol. -
表 1 试样U78CrV钢的主要化学成分
Table 1. Main chemical composition of U78CrV steel
% C Si Mn Cr V S 0.78 0.70 0.79 0.32 0.08 0.012 表 2 U78CrV钢在不同温度时的氢扩散参数
Table 2. Hydrogen diffusion parameters of U78CrV steel at different temperatures
T/℃ $ {N}_{\infty } $×1010/(mol∙cm−2∙s−1) $ {t}_{L} $/s $ {D}_{\mathrm{e}\mathrm{f}\mathrm{f}} $×106/(cm2∙s−1) 25 6.20 1548 1.14 35 6.51 1065 1.69 45 8.64 771 2.29 55 11.20 680 2.60 65 12.25 627 2.82 -
[1] Zhang Jianliang, Xiao Qing'an, Xiao Lei, et al. Development and steelmaking application of magnesium containing alkaline earth metal composite alloy[J]. Ferroalloy, 2001,4(159):1−7. (张建良, 肖清安, 肖雷, 等. 含镁碱土金属复合合金的开发与炼钢应用[J]. 铁合金, 2001,4(159):1−7. [2] Wang Zhen, Liu Jing, Zhang Shiqi, et al. Effect of strain rate on hydrogen embrittlement sensitivity of hydrogen precharged DP780 steel[J]. Chinese Journal of Corrosion and Protection, 2022,42(1):106−112. (王贞, 刘静, 张施琦, 等. 应变速率对预充氢DP780钢氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2022,42(1):106−112. doi: 10.11902/1005.4537.2020.259 [3] Saini N, Pandey C, Mahapatra M M. Effect of diffusible hydrogen content on embrittlement of P92 steel[J]. International Journal of Hydrogen Energy, 2017,42(27):17328−17338. doi: 10.1016/j.ijhydene.2017.05.214 [4] Dwivedi S K, Vishwakarma M. Hydrogen embrittlement in different materials: A review[J]. International Journal of Hydrogen Energy, 2018,43(46):21603−21616. doi: 10.1016/j.ijhydene.2018.09.201 [5] 崔国文. 缺陷、扩散与烧结[M]. 北京: 清华大学出版社, 1990.Cui Guowen. Defects, diffusion and sintering [M]. Beijing: Tsinghua University Press, 1990. [6] Devanathan M A V, Stachurski M. The adsorption and diffusion of electrolytic hydrogen in palladium[C]//Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1962, 270(1340): 90-102. [7] Haq A J, Muzaka K, Dunne D P, et al. Effect of microstructure and composition on hydrogen permeation in X70 pipeline steels[J]. International Journal of Hydrogen Energy, 2013,38(5):2544−2556. doi: 10.1016/j.ijhydene.2012.11.127 [8] 褚武杨. 氢损伤和滞后断裂[M]. 北京: 冶金工业出版社, 1988.Chu Wuyang. Hydrogen damage and delayed fracture [M]. Beijing: Metallurgical Industry Press, 1988.