留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碲对Y1Cr13易切削不锈钢中硫化物改质的工业研究

吴良平 付正刚 周茂华 王建强 谢剑波 付建勋

吴良平, 付正刚, 周茂华, 王建强, 谢剑波, 付建勋. 碲对Y1Cr13易切削不锈钢中硫化物改质的工业研究[J]. 钢铁钒钛, 2022, 43(5): 197-204. doi: 10.7513/j.issn.1004-7638.2022.05.029
引用本文: 吴良平, 付正刚, 周茂华, 王建强, 谢剑波, 付建勋. 碲对Y1Cr13易切削不锈钢中硫化物改质的工业研究[J]. 钢铁钒钛, 2022, 43(5): 197-204. doi: 10.7513/j.issn.1004-7638.2022.05.029
Wu Liangping, Fu Zhenggang, Zhou Maohua, Wang Jianqiang, Xie Jianbo, Fu Jianxun. Industrial study on modification of sulfide in Y1Cr13free-cutting stainless steel by tellurium[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(5): 197-204. doi: 10.7513/j.issn.1004-7638.2022.05.029
Citation: Wu Liangping, Fu Zhenggang, Zhou Maohua, Wang Jianqiang, Xie Jianbo, Fu Jianxun. Industrial study on modification of sulfide in Y1Cr13free-cutting stainless steel by tellurium[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(5): 197-204. doi: 10.7513/j.issn.1004-7638.2022.05.029

碲对Y1Cr13易切削不锈钢中硫化物改质的工业研究

doi: 10.7513/j.issn.1004-7638.2022.05.029
基金项目: 国家自然科学基金(51874195&51671124)资助。
详细信息
    作者简介:

    吴良平,1994年出生,男,硕士研究生,安徽广德人,研究方向:易切削不锈钢品质提升研究,E-mail:WLPwlp@shu.edu.cn

    通讯作者:

    付建勋,1969年出生,男,教授,主要研究方向为高品质特殊钢的开发、钢铁冶炼与连铸技术,E-mail: fujianxun@shu.edu.cn

  • 中图分类号: TF76,TG142

Industrial study on modification of sulfide in Y1Cr13free-cutting stainless steel by tellurium

  • 摘要: 借助金相显微镜、扫描电子显微镜,Image-Pro Plus图像分析软件等手段分析了碲改质Y1Cr13不锈钢中硫化物的效果并进行了对比。结果表明,当钢中加入0.011%的碲时MnS夹杂周围析出了MnTe夹杂,促使了硫化物夹杂粗化,大多数硫化物的形貌呈椭球状、纺锤状且分布弥散,同时碲增强了硫化物夹杂的抗变形能力。钢中加碲后,硫化物纺锤率由未改质前的55.4%提高到了86.5%,硫化物评级由未改质前的3-1级下降到了2-2级,硫化物形态及评级得到了显著提升。切削试验表明,钢中未加碲时,在切削速率分别为180、360、560 r/min时,切削后所得C型屑百分比分别为53%、59%、64%,且工件切削表面粗糙度Ra分别为3.407、2.112、4.186 μm,然而当钢中添加碲后,切削后所得C型屑百分比分别为86%、90%、93%,且工件切削表面粗糙度Ra分别为2.302、1.978、3.220 μm。因此,钢中添加碲后,显著提升了钢的切削性能。
  • 图  1  工业加碲试验现场(a)和含碲包芯线(b)

    Figure  1.  Industrial test pilot (a) and the Te-containing cored wire (b)

    图  2  最恶劣视场下金相照片及对应图谱

    Figure  2.  Metallographic photos and corresponding maps under the worst viewing field

    图  3  不同倍数下四个轧材试样中典型硫化物夹杂的金相照片

    (a)~(c):未改质原样; (d)~(f): Ø16 mm Te改质; (g)~(i): Ø8 mm Te改质; (j)~(l): Ø5.5 mm Te改质

    Figure  3.  Metallographic photos of typical sulfides in four rolled bars at different magnifications

    图  4  轧材硫化物长宽比

    Figure  4.  Aspect ratio of inclusions in the rolled bars

    图  5  四个轧材试样中典型硫化物夹杂扫描照片

    Figure  5.  SEM images of typical sulfides in four samples

    图  6  四个轧材试样中典型硫化物能谱

    Figure  6.  EDS analysis of the typical sulfides in four rolled bars

    图  7  未改质原样轧材不同转速下的切屑形貌

    Figure  7.  Chip morphologies of the rolled bars at different cutting speeds

    图  8  碲改质轧材不同转速下的切屑形貌

    Figure  8.  Chip morphologies of the Te-modified rolled bars at different cutting speeds

    图  9  切屑的类型

    Figure  9.  Chip types

    图  10  未改质原样和碲改质切屑的统计结果

    Figure  10.  Statistical results of unmodified sample and the Te-modified chip

    表  1  试验钢的主要化学成分

    Table  1.   Main chemical compositions of the experimental steels %

    试样CSiMnPSCrNiTe
    原样0.130.451.150.030.3417.250.04
    碲改质0.120.441.170.030.3517.140.040.011
    下载: 导出CSV

    表  2  Y1Cr13不锈钢原样及碲改质轧材A类硫化物评级对比

    Table  2.   Grade of type A inclusions in Y1Cr13 stainless steel and Te modified rolled bars

    样品国标评级(GBT 10516-2005 )德标评级
    原样粗系4.5级,细系5.5级3-1级
    1#粗系4.0级,细系2.5级2-2级
    2#粗系4.0级,细系4.0级2-2级
    3#粗系2.5级,细系3.0级2-2级
    下载: 导出CSV

    表  3  轧材硫化物统计

    Table  3.   Statistics of the inclusions in the rolled bars

    样品规格/mm硫化物平均面积/μm2硫化物平均等效直径/μm硫化物密度/(个·mm−2)总长宽比
    原样Ø165.42.242326.79
    1#Ø1624.075.7016243.65
    2#Ø813.714.7818533.89
    3#Ø5.59.953.3222453.31
    下载: 导出CSV

    表  4  切削钢表面粗糙度统计

    Table  4.   Statistics of surface roughness of the machining steels

    转速/
    (r·min−1)
    Ra/µm
    原样 碲改质
    测定值 平均值 测定值 平均值
    180 3.155,3.276,3.790 3.407 2.184,2.449,2.274 2.302
    360 2.165,2.074,2.098 2.112 1.977,1.903,2.055 1.978
    560 4.000,4.392,4.167 4.186 3.199,3.187,3.274 3.220
    下载: 导出CSV
  • [1] Lin Qizeng, Li Cheng. Rapidly developing stainless steel industry in China[J]. Iron and Steel, 2006,41(12):1−2. (林企曾, 李成. 迅速发展的中国不锈钢工业[J]. 钢铁, 2006,41(12):1−2. doi: 10.3321/j.issn:0449-749X.2006.12.001
    [2] Wu Hailong, Huang Yun, Huang Zhi, et al. Experimental research on the abrasive belt grinding turbine blades material 1Cr13 stainless steel[J]. Key Engineering Materials, 2011,487(1):452−453.
    [3] Cardoso P H S, Kwietniewski C, Porto J P, et al. The influence of delta ferrite in the AISI 416 stainless steel hot workability[J]. Materials Science and Engineering A, 2003,351(1):1−2.
    [4] Domizzi G, Anteri G, Ovejero-Garcia J. Influence of sulphur content and inclusion distribution on the hydrogen induced blister cracking in pressure vessel and pipeline steels[J]. Corrosion Science, 2001,43(2):325−326. doi: 10.1016/S0010-938X(00)00084-6
    [5] Li Yanmei, Zhu Fuxian, Cui Fengping, et al. Analysis on formation mechanism of delamination defect in medium and heavy steel plate[J]. Journal of Northeast University:Natural Science Edition, 2007,28(7):1002−1003. (李艳梅, 朱伏先, 崔凤平, 等. 中厚钢板分层缺陷的形成机制分析[J]. 东北大学学报:自然科学版, 2007,28(7):1002−1003.
    [6] Li Tai. Hot forging crack analysis and improvement measures of non-uenched and tempered steel F45MnVS[J]. Special Steel, 2015,36(5):28−30. (李泰. 非调质钢F45MnVS热顶锻裂纹分析和改进工艺措施[J]. 特殊钢, 2015,36(5):28−30.
    [7] Chen Xiaokang, Yang Shufeng, Li Jingshe. Inclusion modification of E36 ship plate steel containing yttrium[J]. China Metallurgy, 2019,29(12):25−26. (陈晓康, 杨树峰, 李京社. 含钇E36船板钢硫化物改性[J]. 中国冶金, 2019,29(12):25−26.
    [8] A. Mahmutoviü, M. Rimac. Modification of non-metallic inclusions by tellurium in austenitic stainless steel[J]. Journal of Trends in the Development of Machinery and Associated Technology, 2015, 19(1): 53-56.
    [9] Zhang Shuo, Yang Shufeng, Li Jingshe, et al. Control of MnS inclusion morphology in Y15 free-cutting steel by tellurium treatment[J]. Iron and Steel, 2017,52(9):27−29. (张硕, 杨树峰, 李京社, 等. 碲处理控制Y15易切削钢中MnS硫化物形貌[J]. 钢铁, 2017,52(9):27−29.
    [10] Li Jie, Zhu Qiangbin, Fu Jianxun, et al. Morphology of MnS inclusions in tellurium modified 303Cu stainless steel[J]. Iron Steel Vanadium Titanium , 2020,41(6):135−136. (李杰, 朱强斌, 付建勋, 等. 碲改质303Cu不锈钢中MnS夹杂物形态[J]. 钢铁钒钛, 2020,41(6):135−136. doi: 10.7513/j.issn.1004-7638.2020.06.024
    [11] Zheng L, Malfliet A, Wollants P, et al. Effect of surfactant Te on the formation of MnS inclusions in steel[J]. Metallurgical and Materials Transactions B, 2017,48(5):2447−2448. doi: 10.1007/s11663-017-1050-5
    [12] Shen Ping, Yang Qiankun, Zhang Dong, et al. Application of tellurium in free-cutting steels[J]. Journal of Iron and Steel Research International, 2018,25(8):787−789. doi: 10.1007/s42243-018-0123-2
    [13] Wu Xiangyu, Wu Liangping, Fu Jianxun, et al. Modification of sulfide by Te in Y1Cr13 free-cutting stainless steel[J]. Metallurgical Research & Technology, 2020,117(1):107−108.
    [14] Xie Jianbo, Wu Liangping, Fu Jianxun, et al. Morphology and composition characteristics of solid solution in Te-treated Y1Cr17 steel[J]. Emerging Materials Research, 2020,9(4):1145−1146. doi: 10.1680/jemmr.19.00138
    [15] Hao Yuan, Zhu Pingshun. Effect of tellurium on cast steel[J]. Journal of Lanzhou University of Technology, 1991,(3):53−54. (郝远, 朱平顺. 碲在铸钢中的作用[J]. 兰州理工大学学报, 1991,(3):53−54.
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  261
  • HTML全文浏览量:  34
  • PDF下载量:  157
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-12
  • 刊出日期:  2022-11-01

目录

    /

    返回文章
    返回