留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

W掺杂纳米M相VO2的水热合成及其相变性能

杨雪 邹建

杨雪, 邹建. W掺杂纳米M相VO2的水热合成及其相变性能[J]. 钢铁钒钛, 2022, 43(6): 24-30. doi: 10.7513/j.issn.1004-7638.2022.06.004
引用本文: 杨雪, 邹建. W掺杂纳米M相VO2的水热合成及其相变性能[J]. 钢铁钒钛, 2022, 43(6): 24-30. doi: 10.7513/j.issn.1004-7638.2022.06.004
Yang Xue, Zou Jian. Hydrothermal synthesis and phase transformation properties of W-doped VO2(M) nanoparticles[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(6): 24-30. doi: 10.7513/j.issn.1004-7638.2022.06.004
Citation: Yang Xue, Zou Jian. Hydrothermal synthesis and phase transformation properties of W-doped VO2(M) nanoparticles[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(6): 24-30. doi: 10.7513/j.issn.1004-7638.2022.06.004

W掺杂纳米M相VO2的水热合成及其相变性能

doi: 10.7513/j.issn.1004-7638.2022.06.004
基金项目: 重庆市基础与前沿研究计划项目(cstc2016jcyjA0027);中央高校基本科研业务费项目(XDJK2020B026)
详细信息
    作者简介:

    杨雪,1998年出生,女,海南琼海人,硕士研究生,研究方向:无机材料,E-mail:yangxue98@email.swu.edu.cn

  • 中图分类号: TF841.3,TB34

Hydrothermal synthesis and phase transformation properties of W-doped VO2(M) nanoparticles

  • 摘要: 以偏钒酸铵为钒源,水合肼为还原剂,偏钨酸铵为掺杂剂,采用一步水热法在280 ℃制备了掺W量(原子分数表示)从0到2.0%的VO2粉体,并将其加入到聚氨酯中,制备VO2/PU复合薄膜。通过XRD、TEM、XPS、DSC对合成的样品进行了物相组成、形貌、元素价态和相变性能分析,利用紫外-可见-近红外光谱仪测定了薄膜的透射率。结果表明:随着W掺杂量从0增加到2.0%,二氧化钒升温时的相变温度从61.8 ℃降低至15 ℃。基于掺杂1.0%的二氧化钒粉体制备的VO2/PU复合薄膜,ΔTsol可达11.7%,基本满足智能窗的实际应用要求。
  • 图  1  280 ℃水热合成不同掺杂量二氧化钒的XRD谱

    Figure  1.  XRD patterns of VO2 with different doping levels synthesized by hydrothermal method at 280 ℃

    图  2  不同掺杂量VO2 纳米颗粒的TEM图像及其相应的晶格分辨HRTEM图像

    (a)、(d)未掺杂;(b)、(e)掺杂1.0 %;(c)、(f)掺杂2.0 %

    Figure  2.  TEM images and their corresponding lattice-resolved HRTEM images of VO2 NPs with different W-doping contents

    图  3  掺钨1.0% VO2样品的XPS谱

    Figure  3.  XPS spectrum of 1.0% W-doped VO2 sample

    图  4  不同掺钨量的二氧化钒样品的DSC曲线和Tc-heating与掺杂量的线性拟合

    Figure  4.  DSC curves and Tc-heating data with linear fitting of the obtained VO2 with different W-doping contents

    图  5  VO2/PU 复合薄膜在20 ℃(实线)和100 ℃(虚线)的透射光谱

    Figure  5.  Transmission spectra of VO2/PU composite films at the temperature of 20 ℃(solid line) and 100 ℃ (dash line) respectively

    表  1  具有不同掺钨量的样品的金属-绝缘体相变温度汇总

    Table  1.   Summary of metal insulator transition temperatures for samples with different W-doping concentrations

    掺钨量/%Tc-heating /℃Tc-cooling /℃Tc/℃热滞宽度/℃ΔHheating/
    (J·g−1)
    ΔHcooling/
    (J·g−1)
    ΔH/(J·g−1)
    061.833.147.528.730.19−32.3131.25
    0.549.527.738.621.825.66−26.2225.94
    1.040.319.429.920.923.36−22.1422.75
    1.530.49.119.821.317.82−16.3917.11
    2.025.34.71520.613.96−15.1314.55
    注:ΔH=(ΔHheating+|ΔHcooling|)/2 ; Tc= (Tc-heating + Tc-cooling)/2。
    下载: 导出CSV

    表  2  不同掺钨量VO2薄膜的热致变色性能

    Table  2.   Thermochromic properties of VO2 films with different W-doping concentrations

    掺钨量/%涂膜浆料体积/mLTsol /%Tlum /%ΔTsol /%
    20 ℃100 ℃20 ℃100 ℃
    00.857.543.753.052.313.8
    0.50.853.645.351.254.68.3
    0.4+0.4+0.439.426.732.434.112.7
    1.00.849.842.746.849.57.1
    0.4+0.4+0.441.830.137.137.911.7
    1.50.843.542.441.446.31.1
    0.4+0.4+0.434.531.431.635.93.1
    下载: 导出CSV
  • [1] Xu Fang, Cao Xun, Luo Hongjie, et al. Recent advances in VO2-based thermochromic composites for smart windows[J]. Journal of Materials Chemistry C, 2018,6(8):1913−1919.
    [2] Zheng Jianyun, Bao Shanhu, Jin Ping. TiO2(R)/VO2(M)/TiO2(A) multilayer film as smart window: Combination of energy-saving, antifogging and self-cleaning functions[J]. Nano Energy, 2015:11136−11145.
    [3] Liang Zihui, Zhao Li, Meng Wanfan, et al. Tungsten-doped vanadium dioxide thin films as smart windows with self-cleaning and energy-saving functions[J]. Journal of Alloys and Compounds, 2017:694124−694131.
    [4] Ji Haining, Liu Dongqing, Cheng Haifeng, et al. Large area infrared thermochromic VO2 nanoparticle films prepared by inkjet printing technology[J]. Solar Energy Materials and Solar Cells, 2019:194235−194243.
    [5] Liang Shan, Shi Qiwu, Zhu Hongfu, et al. One-step hydrothermal synthesis of W-doped VO2 (M) nanorods with a tunable phase-transition temperature for infrared smart windows[J]. ACS Omega, 2016,1(6):1139−1148. doi: 10.1021/acsomega.6b00221
    [6] Warwick Michael-E-A, Binions Russell. Chemical vapour deposition of thermochromic vanadium dioxide thin films for energy efficient glazing[J]. Journal of Solid State Chemistry, 2014:21453−21466.
    [7] Dang Yuanyuan, Wang Danping, Zhang Xin, et al. Structure and thermochromic properties of Mo-doped VO2 thin films deposited by sol-gel method[J]. Inorganic and Nano-metal Chemistry, 2019,49(4):120−125. doi: 10.1080/24701556.2019.1611852
    [8] Guo H, Khan M-I, Cheng C, et al. Vanadium dioxide nanowire-based microthermometer for quantitative evaluation of electron beam heating[J]. Nature Communications, 2014,5(1):4986. doi: 10.1038/ncomms5986
    [9] Yin Xianglu, Zeng Zehua, Gao Rongrong, et al. Thermolysis preparation of monoclinic phase vanadium dioxide with ultrafine particles under an inert gas atmosphere[J]. Iron Steel Vanadium Titanium, 2022,43(1):1−6. (尹翔鹭, 曾泽华, 高荣荣, 等. 惰性气氛下热分解法制备M相二氧化钒超细颗粒[J]. 钢铁钒钛, 2022,43(1):1−6. doi: 10.7513/j.issn.1004-7638.2022.01.001
    [10] Barra Hamdi-Muhyuddin, Chen Soo-Kien, Tamchek Nizam, et al. Nanostructured VO2 (A) and VO2 (M) derived from VO2 (B): Facile preparations and analyses of structural, thermal, optical and thermophysical properties[J]. Medžiagotyra, 2021,27(3):269−275.
    [11] Zhang Liangmiao, Yao Jianning, Guo Yunfeng, et al. VO2(A) nanorods: One-pot synthesis, formation mechanism and thermal transformation to VO2(M)[J]. Ceramics International, 2018,44(16):19301−19306. doi: 10.1016/j.ceramint.2018.07.157
    [12] Chen Ru, Miao Lei, Liu Chengyan, et al. Shape-controlled synthesis and influence of W doping and oxygen nonstoichiometry on the phase transition of VO2[J]. Scientific Reports, 2015,5(1):14087. doi: 10.1038/srep14087
    [13] Sirvent P, Pérez G, Guerrero A. Efficient VO2(M) synthesis to develop thermochromic cement-based materials for smart building envelopes[J]. Materials Chemistry and Physics, 2021:269124765.
    [14] Chang Tianci, Cao Xun, Long Yi, et al. How to properly evaluate and compare the thermochromic performance of VO2-based smart coatings[J]. Journal of Materials Chemistry A, 2019,7(42):24164−24172. doi: 10.1039/C9TA06681K
    [15] Wu Jialiang, Tong Liping, Wang Huifen, et al. Regulation of phase transition temperature and preparation for doping-VO2 smart thermal control films[J]. Journal of Applied Physics, 2022,131(8):85101. doi: 10.1063/5.0054066
    [16] Wu Shaowen, Tian Shouqin, Liu Baoshun, et al. Facile synthesis of mesoporous VO2 nanocrystals by a cotton-template method and their enhanced thermochromic properties[J]. Solar Energy Materials and Solar Cells, 2018:176427−176434.
    [17] Morin F J. Oxides which show a metal-to-insulator transition at the neel temperature[J]. Physical Review Letters, 1959,3(1):34−36. doi: 10.1103/PhysRevLett.3.34
    [18] Whittaker Luisa, Patridge Christopher J, Banerjee Sarbajit. Microscopic and nanoscale perspective of the metal−insulator phase transitions of VO2: Some new twists to an old tale[J]. The Journal of Physical Chemistry Letters, 2011,2(7):745−758. doi: 10.1021/jz101640n
    [19] Li Dengbing, Li Ming, Pan Jing, et al. Hydrothermal synthesis of Mo-doped VO2 /TiO2 composite nanocrystals with enhanced thermochromic performance[J]. ACS Applied Materials & Interfaces, 2014,6(9):6555−6561.
    [20] Li Bin, Yao Jiajun, Tian Shouqin, et al. A facile one-step annealing route to prepare thermochromic W doped VO2 (M) particles for smart windows[J]. Ceramics International, 2020,46(11):18274−18280. doi: 10.1016/j.ceramint.2020.05.042
    [21] He Xinfeng, Zeng Yijie, Xu Xiaofeng, et al. Orbital change manipulation metal-insulator transition temperature in W-doped VO2[J]. Physical Chemistry Chemical Physics, 2015,17(17):11638−11646. doi: 10.1039/C4CP04889J
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  175
  • HTML全文浏览量:  42
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-26
  • 刊出日期:  2023-01-13

目录

    /

    返回文章
    返回