留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

射频等离子体球化Ti-25Ta合金粉末及其选区激光熔化成形性能研究

蒲芸娜 赵德伟 施麒 谭冲 郑海忠 刘辛 丁忠耀

蒲芸娜, 赵德伟, 施麒, 谭冲, 郑海忠, 刘辛, 丁忠耀. 射频等离子体球化Ti-25Ta合金粉末及其选区激光熔化成形性能研究[J]. 钢铁钒钛, 2022, 43(6): 58-65. doi: 10.7513/j.issn.1004-7638.2022.06.009
引用本文: 蒲芸娜, 赵德伟, 施麒, 谭冲, 郑海忠, 刘辛, 丁忠耀. 射频等离子体球化Ti-25Ta合金粉末及其选区激光熔化成形性能研究[J]. 钢铁钒钛, 2022, 43(6): 58-65. doi: 10.7513/j.issn.1004-7638.2022.06.009
Pu Yunna, Zhao Dewei, Shi Qi, Tan Chong, Zheng Haizhong, Liu Xin, Ding Zhongyao. Research on radio frequency plasma spheroidized Ti-25Ta powder and its fabrication by selective laser melting[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(6): 58-65. doi: 10.7513/j.issn.1004-7638.2022.06.009
Citation: Pu Yunna, Zhao Dewei, Shi Qi, Tan Chong, Zheng Haizhong, Liu Xin, Ding Zhongyao. Research on radio frequency plasma spheroidized Ti-25Ta powder and its fabrication by selective laser melting[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(6): 58-65. doi: 10.7513/j.issn.1004-7638.2022.06.009

射频等离子体球化Ti-25Ta合金粉末及其选区激光熔化成形性能研究

doi: 10.7513/j.issn.1004-7638.2022.06.009
基金项目: 中国与乌克兰政府间科技交流项目 (国科外[2021]13号);广州市重点研发计划 (202206040001);清远市科技计划项目 (2021DZX028)。
详细信息
    作者简介:

    施麒,1987年出生,男,汉族,浙江绍兴人,博士,高级工程师,主要从事金属粉体制备及其增材制造研究,E-mail:shiqi@gdinm.com

    通讯作者:

    丁忠耀,男,汉族,工程师,主要从事钽铌粉体制造研究,E-mail:370794312@qq.com

  • 中图分类号: TF123,TG665

Research on radio frequency plasma spheroidized Ti-25Ta powder and its fabrication by selective laser melting

  • 摘要: 利用射频等离子体球化工艺成功制备了Ti-25Ta合金粉末,采用选区激光熔化成形Ti-25Ta合金球形粉末,研究了激光功率对打印件表面形貌、致密度、微观组织和力学性能的影响。结果显示,球化后Ti-25Ta合金粉末D50为43.8 μm,较原料粒径略有增大。原料粉末内部为枝晶组织,球化后粉末内部呈胞状组织。粉末的流动性、松装密度和振实密度均有大幅提高。随着激光功率增加,α'马氏体细化明显。在较高激光功率200 W时,致密度达到最大95.32%,显微硬度(HV0.3)为378.2。拉伸试验表明,随着激光功率的增大,材料断裂机制由脆性断裂转变为脆性和韧性断裂。
  • 图  1  等离子体试验装置示意

    Figure  1.  Schematic of radio frequency plasma spheroidization process

    图  2  Ti-25Ta合金粉末粒度分布

    (a)球化前;(b)球化后

    Figure  2.  Particle size distribution of Ti-25Ta alloy powder before and after spheroidization

    图  3  Ti-25Ta合金粉末球化前后X射线衍射图谱

    Figure  3.  XRD patterns of Ti-25Ta powder before and after spheroidization

    图  4  球化前后Ti-25Ta合金粉末的扫描电子显微镜形貌

    (a)原料粉末形貌;(b)球形粉末形貌;(c)原料粉末截面;(d)球形粉末截面

    Figure  4.  SEM images of raw material powder (a), spherical powder (b), and the cross sections of raw material powder (c) and spherical powder (d)

    图  5  Ti-25 Ta合金粉末球化前后电子背散射衍射

    (a)原料粉末取向;(b)原料粉末相分布;(c)球化粉末取向;(d)球化粉末相分布

    Figure  5.  (a) Orientation map of raw material powder; (b) Phase distribution map of raw material powder; (c) Orientation map of spheroidized powder; (d) Phase distribution map of spheroidized powder

    图  6  选区激光熔化Ti-25Ta合金不同功率XRD谱

    Figure  6.  XRD spectra of selective laser melted Ti-25Ta using different laser powers

    图  7  选区激光熔化Ti-25Ta合金致密度随激光功率的变化

    Figure  7.  Relative density variation of Ti-25Ta alloy produced by selective laser melting

    图  8  不同功率制备Ti-25Ta合金零件表面的扫描电子显微形貌

    Figure  8.  SEM images of surface morphologies of Ti-25Ta alloy parts prepared using different laser powers

    (a) 80 W;(b) 120 W;(c) 160 W;(d) 200 W

    图  9  选区激光熔化过程中不同功率下Ti-25Ta合金的扫描电子显微镜形貌

    (a) 80 W;(b) 120 W;(c) 160 W;(d) 200 W

    Figure  9.  SEM images of Ti-25Ta alloy fabricated using different laser powers

    图  10  不同功率制备Ti-25Ta合金的EBSD: (a)和(b) 功率为120 W时取向图和相分布;(c)和(d) 功率为160 W时取向图和相分布

    Figure  10.  EBSD orientation maps and phase distribution maps of Ti-25Ta alloy fabricated using laser powers of (a) and (b) 120 W, (c) and (d) 160 W

    图  11  选区激光熔化钛钽合金显微硬度随激光功率的变化

    Figure  11.  Variation of microhardness of Ti-25Ta alloy by selective laser melting with different laser powers

    图  12  Ti-25Ta合金拉伸断口形貌

    Figure  12.  Tensile fracture morphology of Ti-25Ta alloys fabricated using various laser powers

    (A)、(a) 80 W; (B)、(b) 120 W; (C)、(c) 160 W; (D)、(d) 200 W

    表  1  射频等离子体球化Ti-25Ta合金粉末试验参数

    Table  1.   Experimental parameters of radio frequency plasma spheroidization of Ti-25Ta powder

    载气(Ar)输送量/
    (L·min−1)
    鞘气(He)输送量/
    (L·min−1)
    输送粉末速率/
    (g·min−1)
    等离子体输
    出功率/kW
    5103026
    下载: 导出CSV

    表  2  选区激光熔化成形参数

    Table  2.   SLM process parameters

    编号激光功
    率/W
    扫描速度/
    (mm·s−1)
    层厚/
    μm
    扫描间距/
    μm
    激光能量密度/
    (J·mm−3)
    S180500306088.88
    S21205003060133.33
    S31605003060177.77
    S42005003060222.22
    下载: 导出CSV

    表  3  Ti-25Ta合金粉末球化前后的粉末特征

    Table  3.   Particle characteristics of Ti-25Ta powder before and after spheroidization

    钛钽合金粉末流动性
    (以50 g计)/s
    松装密度/
    (g·cm−3)
    振实密度/
    (g·cm−3)
    原料粉末1.382.54
    球化粉末6.273.117.73
    下载: 导出CSV

    表  4  球化前后Ti-25Ta合金粉末化学成分

    Table  4.   Chemical compositions of Ti-25Ta powder before and after spheroidization %

    TiTaHOC
    球化前Bal.26.570.0280.150.032
    球化后Bal.28.240.020.160.026
    下载: 导出CSV

    表  5  不同功率下Ti-25Ta合金试样的拉伸性能

    Table  5.   Tensile properties of Ti-25Ta specimens fabricated using various laser powers

    编号激光功率/W抗拉强度/MPa屈服强度/MPa延伸率/%
    S1804082191
    S21209064682
    S31608313974
    S420010355235
    下载: 导出CSV
  • [1] Oliveira Campos F, Araujo A C, Munhoz A L J, et al. The influence of additive manufacturing on the micromilling machinability of Ti6Al4V: A comparison of SLM and commercial workpieces[J]. Journal of Manufacturing Processes, 2020,60:299−307. doi: 10.1016/j.jmapro.2020.10.006
    [2] Harun W S W, Manam N S, Kamariah M, et al. A review of powdered additive manufacturing techniques for Ti-6Al-4V biomedical applications[J]. Powder Technology, 2018,331:74−97. doi: 10.1016/j.powtec.2018.03.010
    [3] Sopata M, Sadej M, Jakubowicz J. High temperature resistance of novel tantalum-based nanocrystalline refractory compounds[J]. Journal of Alloys and Compounds, 2019,788:476−484. doi: 10.1016/j.jallcom.2019.02.230
    [4] Sun P, Fang Z Z, Zhang Y, et al. Microstructure and mechanical properties of Ti-6Al-4V fabricated by selective laser melting of powder produced by granulation-sintering-deoxygenation method[J]. JOM, 2017,69(12):2731−2737. doi: 10.1007/s11837-017-2584-3
    [5] Vrancken B, Thijs L, Kruth J P, et al. Microstructure and mechanical properties of a novel β titanium metallic composite by selective laser melting[J]. Acta Materialia, 2014,68:150−158. doi: 10.1016/j.actamat.2014.01.018
    [6] Morita A, Fukui H, Tadano H, et al. Alloying titanium and tantalum by cold crucible levitation melting (CCLM) furnace[J]. Materials Science and Engineering:A, 2000,280(1):208−213. doi: 10.1016/S0921-5093(99)00668-1
    [7] Laheurte P, Prima F, Eberhardt A, et al. Mechanical properties of low modulus β titanium alloys designed from the electronic approach[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2010,3(8):565−573. doi: 10.1016/j.jmbbm.2010.07.001
    [8] Málek J, Hnilica F, Veselý J, et al. Microstructure and mechanical properties of Ti-35Nb-6Ta alloy after thermomechanical treatment[J]. Materials Characterization, 2012,66:75−82. doi: 10.1016/j.matchar.2012.02.012
    [9] Brodie E G, Robinson K J, Sigston E, et al. Osteogenic potential of additively manufactured Ti-Ta alloys[J]. ACS Applied Bio Materials, 2021,4(1):1003−1014. doi: 10.1021/acsabm.0c01450
    [10] Sehhat M H, Behdani B, Hung C H, et al. Development of an empirical model on melt pool variation in laser foil printing additive manufacturing process using statistical analysis[J]. Metallography, Microstructure and Analysis, 2021,10(5):684−691. doi: 10.1007/s13632-021-00795-x
    [11] Hung C H, Turk T, Sehhat M H, et al. Development and experimental study of an automated laser-foil-printing additive manufacturing system[J]. Rapid Prototyping Journal, 2022,28(1):20−21.
    [12] Behdani B, Senter M, Mason L, et al. Numerical study on the temperature-dependent viscosity effect on the strand shape in extrusion-based additive manufacturing[J]. Journal of Manufacturing and Materials Processing, 2020,4(2):46. doi: 10.3390/jmmp4020046
    [13] Han C, Fang Q, Shi Y, et al. Recent advances on high‐entropy alloys for 3D printing[J]. Advanced Materials, 2020,32(26):1903855. doi: 10.1002/adma.201903855
    [14] Sun P, Fang Z Z, Zhang Y, et al. Review of the methods for production of spherical Ti and Ti alloy powder[J]. JOM, 2017,69(10):1853−1860. doi: 10.1007/s11837-017-2513-5
    [15] Ogren J R. Powder metallurgy of iron and steel[J]. Journal of Materials Engineering and Performance, 1998,7(4):455.
    [16] Samal P, Newkirk J. Powder metallurgy methods and applications[J]. JOM, 2020,31(10):1356−1357.
    [17] Gu Z T, Ye G Y, Jin Y P. Composition analysis of spherical titanium powder prepared by radio frequency induced plasma[J]. Intense Laser and Particle Beam, 2012,24(6):1409−1413. doi: 10.3788/HPLPB20122406.1409
    [18] Jiang X L, Boulos M. Induction plasma spheroidization of tungsten and molybdenum powders[J]. Transactions of Nonferrous Metals Society of China, 2006,16(1):13−17. doi: 10.1016/S1003-6326(06)60003-4
    [19] Soro N, Attar H, Brodie E, et al. Evaluation of the mechanical compatibility of additively manufactured porous Ti–25Ta alloy for load-bearing implant applications[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2019,97:149−158. doi: 10.1016/j.jmbbm.2019.05.019
  • 加载中
图(12) / 表(5)
计量
  • 文章访问数:  80
  • HTML全文浏览量:  82
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-31
  • 刊出日期:  2023-01-13

目录

    /

    返回文章
    返回