留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

固溶时效处理对Ti60合金组织及性能的影响

张天馨 岳颗 胡钊华 郭杰 耿乃涛

张天馨, 岳颗, 胡钊华, 郭杰, 耿乃涛. 固溶时效处理对Ti60合金组织及性能的影响[J]. 钢铁钒钛, 2022, 43(6): 78-83. doi: 10.7513/j.issn.1004-7638.2022.06.012
引用本文: 张天馨, 岳颗, 胡钊华, 郭杰, 耿乃涛. 固溶时效处理对Ti60合金组织及性能的影响[J]. 钢铁钒钛, 2022, 43(6): 78-83. doi: 10.7513/j.issn.1004-7638.2022.06.012
Zhang Tianxin, Yue Ke, Hu Zhaohua, Guo Jie, Geng Naitao. Effect of solution aging treatment on microstructure and properties of Ti60 alloy[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(6): 78-83. doi: 10.7513/j.issn.1004-7638.2022.06.012
Citation: Zhang Tianxin, Yue Ke, Hu Zhaohua, Guo Jie, Geng Naitao. Effect of solution aging treatment on microstructure and properties of Ti60 alloy[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(6): 78-83. doi: 10.7513/j.issn.1004-7638.2022.06.012

固溶时效处理对Ti60合金组织及性能的影响

doi: 10.7513/j.issn.1004-7638.2022.06.012
详细信息
  • 中图分类号: TF823

Effect of solution aging treatment on microstructure and properties of Ti60 alloy

  • 摘要: 通过光学显微镜和扫描电镜观察分析固溶时效处理对Ti60合金微观组织的影响,结合其室温及600 ℃高温拉伸分析得到:锻坯1/2高区域,组织较为均匀,适于在此取样开展Ti60合金固溶时效处理及后续性能研究。采用1035 ℃/2 h/WQ+700 ℃/5 h/AC固溶时效处理,Ti60合金的室温抗拉强度为1193 MPa,延伸率为6.7%;600 ℃高温抗拉强度达到751MPa,延伸率为20.3 %,具有较好的强塑性匹配。试样的裂纹源起源于试样中心部位,断面凹凸不平,为典型的韧窝型断裂;裂纹源在边部时,以爆炸式发散,断口均有明显的撕裂棱和解理面,断裂方式为脆性断裂。在600 ℃长时间暴露过程中,合金表面发生氧化,降低Ti60合金热稳定性及塑性。于600 ℃环境中考察Ti60合金长期稳定服役性能,Ti60合金锻态室温抗拉强度为1 064 MPa,延展率为9.4%;固溶时效后试样抗拉强度为1 224 MPa,延展率为4.7%。
  • 图  1  Ti60合金等轴组织

    Figure  1.  Equiaxed microstructure of Ti60 alloy

    图  2  固溶组织形貌

    (a)边部,1 025 ℃; (b) 边部,1 035 ℃; (c) 边部,1 045 ℃; (d) 1/2,1 025 ℃; (e) 1/2,1 035 ℃; (f) 1/2,1 045 ℃; (g) 中心,1 025 ℃; (h) 中心,1 035 ℃; (i) 中心,1 045 ℃

    Figure  2.  Microstructure in different positions of Ti60 alloy after solution treatment at different temperatures

    图  3  时效处理后的组织形貌

    (a) 边部,1 025 ℃; (b) 边部,1 035 ℃; (c) 边部,1 045 ℃; (d) 1/2,1 025 ℃ ; (e) 1/2,1 035 ℃; (f) 1/2,1 045 ℃; (g) 中心,1 025 ℃; (h) 中心,1 035 ℃; (i) 中心,1 045 ℃

    Figure  3.  The microstructure in different positions of Ti60 alloy after aging treatment at different temperatures

    图  4  室温拉伸试样断口形貌

    I 1 025 ℃裂纹源;II 1 035 ℃裂纹源;III 1 045 ℃裂纹源;

    Figure  4.  Fracture morphology of tensile specimen deformed at room temperature for Ti60 alloy obtained after solution at different temperatures

    (a) 300×, 1 025 ℃; (b) 300×, 1 035 ℃; (c) 300×, 1 045 ℃; (d) 1 000×, 1 025 ℃; (e) 1 000×, 1 035 ℃; (f) 1 000×, 1 045 ℃

    图  5  高温拉伸试样断后状态

    Figure  5.  Post-fracture state of high temperature tensile sample

    图  6  热暴露试样组织形貌

    (a)锻态; (b) 1 035 ℃/2 h+700 ℃/5 h

    Figure  6.  Microstructure of Ti60 alloy after thermal exposure at 600 ℃

    图  7  热暴露试样室温拉伸断口

    (a)锻态; (b)锻态, 300× ; (c)锻态, 1 000×; (d) 1 035 ℃/2 h+700℃/5 h; (e) 1 035 ℃/2 h+700 ℃/5 h, 300×; (f) 1035℃/2 h+700 ℃/5 h, 1 000×

    Figure  7.  Tensile fracture at room temperature for Ti60 alloy after thermal exposure

    表  1  固溶时效后室温力学性能

    Table  1.   Mechanical properties of Ti60 alloy at room temperature after solution aging

    固溶温度/℃Rm/MPaRp0.2/MPaA/%
    锻态10419466.8
    102510709819.8
    1035119310946.7
    1045118710837.9
    下载: 导出CSV

    表  2  固溶时效后600 ℃高温力学性能

    Table  2.   Mechanical properties of Ti60 alloy deformed at 600 ℃ after solution aging

    固溶温度/℃Rp0.2/MPaRm/MPaA/%Z/%
    10255747352572
    103558775120.366
    10455767402468
    下载: 导出CSV

    表  3  热暴露试样室温力学性能

    Table  3.   Mechanical properties at room temperature of Ti60 alloy after thermal exposure

    样品Rm/MPaRp0.2/MPaA/%
    锻态106410029.4
    1035 ℃/2 h+700 ℃/5 h122410344.7
    下载: 导出CSV
  • [1] Cai Jianming, Li Zhenxi, Ma Jimin, et al. Research and development of 600 ℃ high temperature titanium alloys for aeroengine[J]. Journal of Materials Review, 2005,19(1):4. (蔡建明, 李臻熙, 马济民, 等. 航空发动机用600 ℃高温钛合金的研究与发展[J]. 材料导报, 2005,19(1):4.
    [2] C L, M P . Titanium and titanium alloys: Fundamentals and application[M]. Darmstadt: John Wiley & Sons, 2003.
    [3] Mao Xiaonan, Zhao Yongqing, Yang Guanjun. Development status of titanium alloys for aeroengine[J]. Rare Metals Letters, 2007,26(5):1−7. (毛小南, 赵永庆, 杨冠军. 国外航空发动机用钛合金的发展现状[J]. 稀有金属快报, 2007,26(5):1−7.
    [4] Zeng Liying, Zhao Yongqing, Hong Quan, et al. Research and development of 600 ℃ high temperature titanium alloy[J]. Titanium Industry Progress, 2012,29(5):5. (曾立英, 赵永庆, 洪权, 等. 600 ℃高温钛合金的研发[J]. 钛工业进展, 2012,29(5):5.
    [5] Wallwork G R, Hed A Z. Some limiting factors in the use of alloys at high temperatures[J]. Oxidation of Metals, 1971,3(2):171−184. doi: 10.1007/BF00603485
    [6] Hui Songxiao, Zhang Zhu, Xiao Jinsheng, et al. Advances in thermal stability of high temperature titanium alloys-I. Microstructure stability[J]. Rare Metals, 1999,23(2):125−130. (惠松骁, 张翥, 萧金声, 等. 高温钛合金热稳定性研究进展—I. 组织稳定性[J]. 稀有金属, 1999,23(2):125−130.
    [7] Xiao Jinsheng, Xu Guodong. Ways to improve properties of high temperature titanium alloy[J]. The Chinese Journal of Nonferrous Metals, 1997,17(4):97−105. (萧今声, 许国栋. 提高高温钛合金性能的途径[J]. 中国有色金属学报, 1997,17(4):97−105.
    [8] Jia Weiju, Zeng Weidong, Zhang Yaowu, et al. Effect of heat treatment on microstructure and properties of Ti60 alloy[J]. The Chinese Journal of Nonferrous Metals, 2010,20(11):6. (贾蔚菊, 曾卫东, 张尧武, 等. 热处理对Ti60合金组织及性能的影响[J]. 中国有色金属学报, 2010,20(11):6.
    [9] Madsen A, Ghonem H. Effects of aging on the tensile and fatigue behavior of the near-αTi-1100 at room temperature and 593 ℃[J]. Materials Science and Engineering A, 1994,177(1-2):63−73. doi: 10.1016/0921-5093(94)90478-2
    [10] Jia Xinyun, Liu Peiying, Tao Ye, et al. Oxidation behavior of Ti60 alloy at 650-750 ℃[J]. Journal of Materials Engineering, 2003,(6):5. (贾新云, 刘培英, 陶冶, 等. Ti60合金在650~750 ℃高温下的氧化行为[J]. 材料工程, 2003,(6):5.
    [11] Wanjara P, Jahazi M, Monajati H, et al. Hot working behavior of near-α alloy IMI834[J]. Materials Science & Engineering A, 2005,396(1-2):50−60.
    [12] 魏寿庸, 石卫民, 王鼎春, 等. 600℃时高温钛合金(Ti60)的组织与力学性能[C]//第十四届全国钛及钛合金学术交流会. 上海: 中国有色金属学会, 2010.

    Wei Shouyong, Shi Weimin, Wang Dingchun, et al. Microstructure and mechanical properties of high temperature titanium alloy (Ti60) at 600 ℃[C]//the 14th National Academic Conference on Titanium and Titanium Alloys. Shanghai: The Nonferrous Metals Society of China, 2010.
    [13] Cai Jianming. Thermal stability of TG6 titanium alloy and its partial resumption at high temperature[J]. Rare Metal Materials & Engineering, 2010,39(11):1893−1898.
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  89
  • HTML全文浏览量:  30
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-16
  • 刊出日期:  2023-01-13

目录

    /

    返回文章
    返回