留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钙法提钒尾渣的绿色资源化利用

何为 王建 戈文荪 陈炼

何为, 王建, 戈文荪, 陈炼. 钙法提钒尾渣的绿色资源化利用[J]. 钢铁钒钛, 2022, 43(6): 100-108. doi: 10.7513/j.issn.1004-7638.2022.06.015
引用本文: 何为, 王建, 戈文荪, 陈炼. 钙法提钒尾渣的绿色资源化利用[J]. 钢铁钒钛, 2022, 43(6): 100-108. doi: 10.7513/j.issn.1004-7638.2022.06.015
He Wei, Wang Jian, Ge Wensun, Chen Lian. Clean, high efficiency and green utilization of vanadium tailings extracted by calcium process[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(6): 100-108. doi: 10.7513/j.issn.1004-7638.2022.06.015
Citation: He Wei, Wang Jian, Ge Wensun, Chen Lian. Clean, high efficiency and green utilization of vanadium tailings extracted by calcium process[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(6): 100-108. doi: 10.7513/j.issn.1004-7638.2022.06.015

钙法提钒尾渣的绿色资源化利用

doi: 10.7513/j.issn.1004-7638.2022.06.015
详细信息
  • 中图分类号: X757

Clean, high efficiency and green utilization of vanadium tailings extracted by calcium process

  • 摘要: 以钙法提钒尾渣为研究对象,通过对尾渣成分、物相和主要元素赋存状态的分析,在结合前人研究的基础上,提出了钙法提钒尾渣通过物理法和火法冶金分离技术制取含钒铁合金及含钛炉渣的综合利用途径。研究表明:提钒尾渣经摇床脱硫处理后,分离出石膏渣和含钒富铁料,石膏渣供水泥厂使用,含钒富铁料配加一定比例的还原剂、粘接剂成球后,在矿热炉进行熔分还原冶炼,可获得钒含量3%左右的含钒铁合金及TiO2含量36%左右的还原渣,含钒铁合金可用于含钒钢水合金化;还原渣可用于高钛渣冶炼。能实现钙法提钒尾渣中的有价元素铁、钒、钛等有效提取与回收以及减轻环保压力。
  • 图  1  钙法提钒尾渣物相显微镜下识别

    Figure  1.  Identification of phase of vanadinmtailings extracted by calcium method under microscope

    图  2  含钒富铁料成球工艺流程

    Figure  2.  Process flow chart of vanadium-rich iron material balling

    图  3  (V2O5)、[V]与还原时间的关系

    Figure  3.  Relationship between (V2O5), [V] and reduction time

    图  4  提钒尾渣中氧化物的碳还原∆G0-T关系

    Figure  4.  Carbon reduction ∆G0-T of oxides in vanadium extraction tailings

    图  5  含钒铁合金温度截面

    Figure  5.  Ferroalloy temperature cross section

    图  6  1600 ℃时CaO-SiO2-Al2O3-MgO-TiO2渣系等温截面

    Figure  6.  Isothermal section of CaO-SiO2-Al2O3-MgO-TiO2 slag system at 1600 ℃

    图  7  含钒富铁料球团矿热炉冶炼工艺流程

    Figure  7.  Smelting process of vanadium-rich iron pellet in arc furnace

    图  8  矿热炉熔炼过程中炉渣成分变化

    Figure  8.  Composition change of slag during the smelting process of ore-thermal electric furnace

    图  9  [C]含量对[V]含量的影响关系

    Figure  9.  Influence of [C] content on [V] content

    图  10  [C]含量对[Si]、[Ti]含量的影响关系

    Figure  10.  Influence of [C] content on [Si] and [Ti] content

    图  11  还原渣中FeO与含钒生铁[V]的关系

    Figure  11.  Relationship of reducing slag FeO and [V]

    图  12  还原渣中V2O5与FeO的关系

    Figure  12.  Relationship of reducing slag FeO and V2O5

    表  1  提钒尾渣主要化学成分

    Table  1.   Main chemical composition of vanadium extraction tailings %

    TVTFeSiO2CaOMnOSPTiO2H2O
    0.8~1.420~3510~154~103~71.0~2.50.04~0.067~11.020~35
    下载: 导出CSV

    表  2  钙法提钒尾渣中主要元素的赋存状态

    Table  2.   Occurrence state of main elements in vanadium tailings extracted by calcium method %

    矿物质AlCaCrFeKMgMnMoNaPSSiTiV
    铁(镁)氧化物26.0711.415.0141.530.0032.744.83100.0083.460.004.929.0558.4730.57
    钛(铁)氧化物0.150.030.000.100.000.240.000.000.000.000.000.030.560.07
    铝(铁)氧化物1.840.060.000.040.000.530.140.000.000.000.000.060.010.01
    0.000.000.000.860.000.000.440.000.000.000.000.000.060.12
    硅酸钙(钒-镁)11.6531.660.001.613.2122.2718.910.000.0070.3812.2116.704.4536.06
    铁(钛)硅酸盐55.1825.4694.9754.8479.7318.1973.050.0012.180.0028.4653.1734.4229.19
    铝硅酸盐3.830.720.020.217.051.350.410.000.870.000.001.910.070.20
    镁硅酸盐0.992.010.000.130.0024.350.410.000.000.000.008.551.692.77
    硫酸钙(铁)0.0027.480.000.5810.020.001.420.003.490.0054.310.510.200.00
    钒酸铁0.240.090.000.100.000.240.100.000.0029.620.000.060.000.94
    石英0.000.000.000.000.000.000.000.000.000.000.009.920.000.00
    氧化钙0.051.080.000.000.000.100.290.000.000.000.090.020.070.07
    总计100.00100.00100.00100.00100.00100.00100.00100.00100.00100.00100.00100.00100.00100.00
    下载: 导出CSV

    表  3  提钒尾渣粒度及硫含量分布

    Table  3.   Particle size and sulfur content distribution of tailings

    粒级/mm重量/g产率/%硫含量/%分布率/%
    ≥0.3400.750.3230.21
    −0.3~+0.1557010.710.2342.15
    −0.15~+0.07494517.750.0821.25
    −0.074~+0.052350.46.580.1450.82
    −0.052~+0.037654.512.300.0880.93
    −0.037~+0.0191355.325.460.0871.90
    −0.019~+0.01762.614.330.1171.44
    <0.01645.312.128.7891.31
    合 计5323.11001.17100
    下载: 导出CSV

    表  4  刻槽摇床脱硫效果

    Table  4.   Desulfurization effect of slotting and shaking table

    编 号产 率/ %硫品位/ %硫回收率/ %
    给 矿1001.17100
    刻槽-119.930.0382.92
    刻槽-223.530.0453.43
    刻槽-326.170.1029.16
    刻槽-420.021.05447.16
    刻槽-510.351.51937.32
    下载: 导出CSV

    表  5  含钒富铁料主要化学成分

    Table  5.   Main chemical compositions of vanadium-rich iron material %

    TVTFeSiO2CaOMnOAl2O3TiO2SP
    范围1.39~1.6137~41.813.34~14.62.2~2.91.52~1.622.1~2.3811.98~
    13.06
    0.2~
    0.3
    0.047~
    0.053
    平均值1.4340.813.762.451.582.212.350.280.049
    下载: 导出CSV

    表  6  含钒富铁料球团主要化学成分

    Table  6.   Main chemical composition of vanadium-rich iron pellet %

    TFeMFeV2O5TiO2CaOSiO2MnOAl2O3SP
    范围32.36~
    38.65
    <0.52.08~
    2.67
    9.87~
    11.34
    3.62~
    6.14
    10.22~
    13.28
    1.04~
    1.73
    2.08~
    3.12
    0.22~
    0.31
    0.038~
    0.052
    平均35.62<0.52.2210.234.1511.071.162.780.260.047
    下载: 导出CSV

    表  7  含钒铁合金主要成分

    Table  7.   Main components of alloy %

    CVSiMnTiSP
    范围3.09~
    5.39
    2.15~3.540.56~1.241.52~1.890.63~2.510.037~
    0.056
    0.052~0.084
    平均值4.313.050.841.731.320.0480.072
    下载: 导出CSV

    表  8  高钛还原渣主要成分

    Table  8.   Main components of reducing slag %

    组元V2O5CaOFeOMgOMnOTFeSiO2TiO2Al2O3
    范围0.13~0.5019.19~35.210.60~5.112.16~3.680.12~0.471.09~2.609.96~15.6432.61~38.164.33~10.14
    平均值0.2128.022.482.940.242.0214.0736.166.42
    下载: 导出CSV

    表  9  HRB400E化学成分统计

    Table  9.   Main components of HRB400E

    名称w/%统计
    炉数
    CSiMnPSV
    试验0.21~0.25 0.32~0.45 1.26~1.40 0.018~0.0380.011~0.0400.018~0.03227
    0.2350.381.320.0290.0280.025
    原生产0.21~0.25 0.30~0.47 1.22~1.37 0.012~0.0370.007~0.0350.021~0.03534
    0.2270.381.310.0210.0250.027
    下载: 导出CSV

    表  10  HRB400E力学性能统计

    Table  10.   Main mechanical properties of HRB400E

    品种规格组距/mmReL/MPaRm
    /MPa
    A
    /%
    Agt
    /%
    强屈比反弯统计
    炉数
    线材Ø8、Ø10(430~485)/460(620~685)/658(23.0~44.0)/35.0(12.5~20.8)/16.2(1.39~1.54)/1.47合格12
    Ø12(440~500)/473(625~695)/649(28.0~41.0)/34.0(11.3~20.5)/15.9(1.40~1.56)/1.49合格15
    标准要求≥400≥540≥16≥9.0≥1.25无裂纹
    下载: 导出CSV
  • [1] Wang Lufeng, Fang Minxian. Experimental research on magnetic separation of the vanadium slag tailings reduction[J]. China Venture Capital, 2013,(20):78−79. (王录锋, 方民宪. 提钒尾渣还原渣磁选试验研究[J]. 中国科技投资, 2013,(20):78−79. doi: 10.3969/j.issn.1673-5811.2013.20.072
    [2] 张海平. 钠化提钒尾渣脱钠试验研究[D]. 昆明: 昆明理工大学, 2015.

    Zhang Haiping. Experimental study on eliminating sodium from extracted vanadium tailings[D]. Kunming: Kunming University of Science and Technology, 2015.
    [3] Kahn J. A non-ruffle feedstocks for the production of titanium[J]. Journal of Metallurgy, 1984,33:36−38.
    [4] Rao P K, Sarma P V R B, Tripathy A K, et al. Extraction of vanadium as high-purity vanadium pentoxide from vanadium- bearing titaniferous magnetites[J]. Transtion Metal, 1979,88:87−89.
    [5] Sadykhow G V. Extraction of vanadium from titanium slags from the melting of titanomagnetites[J]. Izvestiya Akademi Nauk SSR, Metauy, 1991,20:2−5.
    [6] Zhang Haiping, Ding Yuehua, Hao Jianzhang, et al. Technology of eliminating sodium from extracted vanadium tailings[J]. Journal of Kunming University of Science and Technology(Natural Science Edition), 2015,40(6):8−12. (张海平, 丁跃华, 郝建璋, 等. 钠化提钒尾渣脱钠试验[J]. 昆明理工大学学报(自然科学版), 2015,40(6):8−12.
    [7] Wang Qi, Jiang Maofa, Wang Meng, et al. Leaching and extraction of vanadium and chromium from vanadium tailings[J]. Nonferrous Metals(Extractive Metallurgy), 2016,(9):13−16. (汪其, 姜茂发, 王猛, 等. 提钒尾渣中钒铬的浸出与萃取[J]. 有色金属(冶炼部分), 2016,(9):13−16.
    [8] Hou Jing, Wu Enhui, Li Jun. Current situation and progress of comprehensive utilization of vanadium extraction tailings[J]. Conservation and Utilization of Mineral Resources, 2017,(6):103−108. (侯静, 吴恩辉, 李军. 提钒尾渣的综合利用研究现状及进展[J]. 矿产保护与利用, 2017,(6):103−108.
    [9] Xu Chongguang, Wang Hailin, Yang Huan, et al. Comprehensive utilization of extracting vanadium tailings[J]. Ferro-alloys, 2018,49(1):40−43. (许崇光, 王海林, 杨欢, 等. 提钒尾渣的综合利用[J]. 铁合金, 2018,49(1):40−43.
    [10] Li Liang. Experimental study about preparation of sintered square brick by using vanadium tailings[J]. Bulletin of the Chinese Ceramic Society, 2018,37(6):1970−1973,1978. (李亮. 利用提钒尾渣制备烧结广场砖试验研究[J]. 硅酸盐通报, 2018,37(6):1970−1973,1978.
    [11] Fan Gang, Wei Chang, Ge Huaiwen, et al. Vanadium recovery from extracted vanadium residue by atmospheric pressure acid leaching[J]. Nonferrous Metals, 2010,62(4):65−68. (樊刚, 魏昶, 葛怀文, 等. 提钒尾渣常压酸浸提钒[J]. 有色金属, 2010,62(4):65−68.
    [12] Wu Enhui, Huang Ping, Yang Shaoli, et al. Experimental study on direct reduction of vanadium tailings carbon-containing pellets[J]. Nonferrous Metals(Extractive Metallurgy), 2011,(11):17−20. (吴恩辉, 黄平, 杨绍利, 等. 提钒尾渣内配碳球团直接还原试验[J]. 有色金属(冶炼部分), 2011,(11):17−20.
    [13] Yang Huifen, Wang Jingjing, Jing Lili, et al. Effect of roasting temperature on the coal-based direct reduction of high-iron vanadium tailings[J]. Journal of University of Science and Technology Beijing, 2010,32(10):1258−1263. (杨慧芬, 王静静, 景丽丽, 等. 焙烧温度对高铁提钒尾渣煤基直接还原效果的影响[J]. 北京科技大学学报, 2010,32(10):1258−1263.
    [14] Yang He, Mao Linqiang, Xue Xiangxin, et al. Experiment on direct reduction of iron from vanadium extraction tailings by adding carbon[J]. Iron Steel Vanadium Titanium, 2013,34(5):28−32. (杨合, 毛林强, 薛向欣, 等. 提钒尾渣配碳直接还原铁试验[J]. 钢铁钒钛, 2013,34(5):28−32. doi: 10.7513/j.issn.1004-7638.2013.05.006
  • 加载中
图(12) / 表(10)
计量
  • 文章访问数:  100
  • HTML全文浏览量:  27
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-01
  • 刊出日期:  2023-01-13

目录

    /

    返回文章
    返回