留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

黄铁矿催化CO还原NO性能研究

张钊 戚瑞 徐亚欣 龚志军

张钊, 戚瑞, 徐亚欣, 龚志军. 黄铁矿催化CO还原NO性能研究[J]. 钢铁钒钛, 2022, 43(6): 109-114. doi: 10.7513/j.issn.1004-7638.2022.06.016
引用本文: 张钊, 戚瑞, 徐亚欣, 龚志军. 黄铁矿催化CO还原NO性能研究[J]. 钢铁钒钛, 2022, 43(6): 109-114. doi: 10.7513/j.issn.1004-7638.2022.06.016
Zhang Zhao, Qi Rui, Xu Yaxin, Gong Zhijun. Performance of pyrite-catalyzed CO reduction of NO[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(6): 109-114. doi: 10.7513/j.issn.1004-7638.2022.06.016
Citation: Zhang Zhao, Qi Rui, Xu Yaxin, Gong Zhijun. Performance of pyrite-catalyzed CO reduction of NO[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(6): 109-114. doi: 10.7513/j.issn.1004-7638.2022.06.016

黄铁矿催化CO还原NO性能研究

doi: 10.7513/j.issn.1004-7638.2022.06.016
基金项目: 内蒙古自然科学基金项目(2019ZD13/2020MS05045)。
详细信息
    作者简介:

    张钊,1998年出生,男,硕士研究生,主要研究稀土催化材料,E-mail:1194118818@qq.com

    通讯作者:

    龚志军,男,副教授,主要研究煤的清洁燃烧、燃煤烟气中污染物的控制及烟气治理中环境催化材料的研发,E-mail:gongzj77@163.com

  • 中图分类号: X511,TQ426

Performance of pyrite-catalyzed CO reduction of NO

  • 摘要: 以黄铁矿作为脱硝催化剂,探究了其催化CO还原NO的性能,并采用XRF、XRD、SEM-EDS及H2-TPR对其表征。结果表明,在400 ℃时,黄铁矿具有78.53%的NO转化率,且在500~800 ℃温度范围内,其NO转化率维持在100%保持不变,在具有优异的NO还原性能的同时还具备极高的N2选择性及良好的CO转化率;黄铁矿在参与催化反应过程中自身分解释放SO2,表面变得粗糙多孔,更有利于NO气体的吸附及还原;黄铁矿中起催化作用的物质为FeS2,其催化CO还原NO的反应遵循Redox反应机理,在反应过程中CO是通过S辅助来还原NO,S的存在更有利于吸附在催化剂表面NO解离的进行,使得黄铁矿表现出极高的催化活性。
  • 图  1  脱硝试验装置设备示意

    1-气瓶;2-混气箱;3-管式炉;4-气体采样系统;5-红外烟气分析仪;6-气体在线监测系统

    Figure  1.  Schematic diagram of the denitrification experimental system

    图  2  黄铁矿和二氧化硅的NO转化率

    Figure  2.  NO conversion ratio for pyrite and silica

    图  3  黄铁矿XRD图谱

    Figure  3.  XRD pattern of pyrite before and after denitrification reaction

    图  4  黄铁矿SEM形貌

    (a)脱硝反应前 (b)脱硝反应后

    Figure  4.  SEM image of pyrite before and after denitrification reaction

    图  5  黄铁矿EDS能谱

    Figure  5.  EDS spectrum of pyrite before and after denitrification reaction

    图  6  黄铁矿H2-TPR图谱

    Figure  6.  H2-TPR analysis of pyrite

    图  7  黄铁矿TG-MS图谱

    Figure  7.  TG-MS for pyrite with the importing of (a) CO first, then NO and (b) NO first, then CO

    表  1  黄铁矿元素分析

    Table  1.   Elemental analysis of pyrite %

    FeSSiAlCaPCoBaCuCl其他
    50.3244.481.771.090.720.540.380.30.170.140.09
    下载: 导出CSV
  • [1] 苏亚欣, 毛玉如, 徐璋. 燃煤氮氧化物排放控制技术[M]. 北京: 化学工业出版社, 2005.

    Su Yaxin, Mao Yuru, Xu Zhang. Coal-fired nitrogen oxide emission control technology [M]. Beijing: Chemical Industry Press, 2005.
    [2] Zhou Haicheng, Gao Zhifang, Long Hongming, et al. NOx control technology and development trend in sintered flue gas[J]. Clean Coal Technology, 2021,27(5):77−88. (周海成, 高志芳, 龙红明, 等. 烧结烟气中NOx治理技术及发展趋势[J]. 洁净煤技术, 2021,27(5):77−88.
    [3] Wen Bin, Song Baohua, Sun Guogang, et al. Advances in denitrification technology for iron and steel sintering flue gas[J]. Environmental Engineering, 2017,35(1):103−107. (温斌, 宋宝华, 孙国刚, 等. 钢铁烧结烟气脱硝技术进展[J]. 环境工程, 2017,35(1):103−107.
    [4] Liang Lei. Preparation and experimental study of low-temperature SCR denitrification catalyst for sintered flue gas[J]. Sintered Pellets, 2021,46(3):86−92. (梁磊. 烧结烟气低温SCR脱硝催化剂的制备及试验研究[J]. 烧结球团, 2021,46(3):86−92.
    [5] Zhang Zhenquan, Zhao Beibei, Li Lanjie, et al. Study on selective separation of vanadium, titanium and tungsten from waste SCR denitration catalysts[J]. Iron Steel Vanadium Titanium, 2021,42(1):24−31. (张振全, 赵备备, 李兰杰, 等. 废SCR脱硝催化剂钒、钛、钨选择性分离研究[J]. 钢铁钒钛, 2021,42(1):24−31. doi: 10.7513/j.issn.1004-7638.2021.01.004
    [6] Chen Yanguang, Guo Zhancheng, Wang Zhi. Simulation study of CO reduction of NO in sintering process[J]. Journal of Iron and Steel Research, 2009,21(1):6−9. (陈彦广, 郭占成, 王志. 烧结过程中CO还原NO的模拟研究[J]. 钢铁研究学报, 2009,21(1):6−9.
    [7] 龚志军, 武文斐, 李保卫, 等. 一种用于煤燃烧过程高温原位催化脱硝方法: 中国, CN105854589A[P]. 2016-08-17.

    Gong Zhijun, Wu Wenfei, Li Baowei, et al. A high-temperature in situ catalytic denitrification method for coal combustion process: China, CN105854589A[P]. 2016-08-17.
    [8] Qi Rui, Gong Zhijun, Hou Limin, et al. Study on the performance of catalytic semi-coke denitrification with rare earth tailings[J]. Coal Conversion, 2021,44(3):68−75. (戚瑞, 龚志军, 侯丽敏, 等. 稀土尾矿催化半焦脱硝性能研究[J]. 煤炭转化, 2021,44(3):68−75.
    [9] 王建. 稀土尾矿催化CO还原脱硝特性实验研究[D]. 包头: 内蒙古科技大学, 2020.

    Wang Jian. Experimental study on the characteristics of catalytic CO reduction denitrification with rare earth tailings[D]. Baotou: Inner Mongolia University of Science and Technology, 2020.
    [10] Li Na, Zhang Shuning, Mei Zheyue, et al. Preparation of rare earth tailings denitrification catalyst and its CO reduction NO performance[J]. Rare Earth, 2019,40(6):88−95. (李娜, 张舒宁, 梅哲跃, 等. 稀土尾矿脱硝催化剂的制备及其CO还原NO性能研究[J]. 稀土, 2019,40(6):88−95.
    [11] Wang Jian, Gong Zhijun, Meng Zhaolei, et al. Experimental study on the catalytic CO reduction of NO from Baiyun Ebo rare earth tailings[J]. Rare Metals and Cemented Carbides, 2020,48(3):38−44,72. (王建, 龚志军, 孟昭磊, 等. 白云鄂博稀土尾矿催化CO还原NO实验研究[J]. 稀有金属与硬质合金, 2020,48(3):38−44,72.
    [12] Wang Jian, Gong Zhijun, Xu Guodong, et al. Experimental study on the characteristics of catalytic CO reduction denitrification of rare earth tailings[J]. Rare Metals, 2020,44(12):1301−1307. (王建, 龚志军, 徐国栋, 等. 稀土尾矿催化CO还原脱硝特性试验研究[J]. 稀有金属, 2020,44(12):1301−1307.
    [13] Lau N T, Fang M, Chan C K. The role of SO2 in the reduction of NO by CO on La2O2S[J]. Journal of Catalysis, 2007,245(2):301−307. doi: 10.1016/j.jcat.2006.10.025
    [14] Wang Xuehai, Fang Xiangcheng, Liu Zhongsheng. Study on the simultaneous reduction of NO and SO2 by CO over Fe/γ-Al2O3 catalyst[J]. Industrial Catalysis, 2012,20(10):63−67. (王学海, 方向晨, 刘忠生. Fe/γ-Al2O3催化剂上CO同时还原NO和SO2研究[J]. 工业催化, 2012,20(10):63−67. doi: 10.3969/j.issn.1008-1143.2012.10.014
    [15] 赵留成. 载金硫化物中性焙烧—非氰浸金过程的研究[D]. 北京: 北京科技大学, 2016.

    Zhao Liucheng. Study on the neutral roasting of gold-bearing sulfide-non-cyanide gold leaching process[D]. Beijing: University of Science and Technology Beijing, 2016.
    [16] Cheng H, Liu Q, Man H, et al. Application of TG-FTIR to study SO2 evolved during the thermal decomposition of coal-derived pyrite[J]. Thermochimica Acta, 2013,555(555):1−6.
    [17] Huang F, Xin S, Mi T, et al. Study of pyrite transformation during coal samples heated in CO2 atmosphere[J]. Fuel, 2021,292(3):120269.
    [18] Wang Lei, Ma Jianxin, Lu Xiaofeng, et al. Catalytic reduction of SO2 and NO on rare earth oxides Ⅰ. Activation characteristics and mechanism of catalysts[J]. Journal of Catalysis, 2000,(6):542−546. (王磊, 马建新, 路小峰, 等. 稀土氧化物上SO2和NO的催化还原 Ⅰ. 催化剂的活化特性和机理[J]. 催化学报, 2000,(6):542−546. doi: 10.3321/j.issn:0253-9837.2000.06.009
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  80
  • HTML全文浏览量:  18
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-01
  • 刊出日期:  2023-01-13

目录

    /

    返回文章
    返回