留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Cr-Mo-V系冷镦钢表面脱碳演变规律的研究

陈继林 马洪磊 霍立伟 闫聪 张昆耀

陈继林, 马洪磊, 霍立伟, 闫聪, 张昆耀. Cr-Mo-V系冷镦钢表面脱碳演变规律的研究[J]. 钢铁钒钛, 2022, 43(6): 153-160. doi: 10.7513/j.issn.1004-7638.2022.06.023
引用本文: 陈继林, 马洪磊, 霍立伟, 闫聪, 张昆耀. Cr-Mo-V系冷镦钢表面脱碳演变规律的研究[J]. 钢铁钒钛, 2022, 43(6): 153-160. doi: 10.7513/j.issn.1004-7638.2022.06.023
Chen Jilin, Ma Honglei, Huo Liwei, Yan Cong, Zhang Kunyao. Study on the evolution law of surface decarburization of Cr-Mo-V cold heading steel[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(6): 153-160. doi: 10.7513/j.issn.1004-7638.2022.06.023
Citation: Chen Jilin, Ma Honglei, Huo Liwei, Yan Cong, Zhang Kunyao. Study on the evolution law of surface decarburization of Cr-Mo-V cold heading steel[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(6): 153-160. doi: 10.7513/j.issn.1004-7638.2022.06.023

Cr-Mo-V系冷镦钢表面脱碳演变规律的研究

doi: 10.7513/j.issn.1004-7638.2022.06.023
基金项目: 河北省科技计划项目(16211017D)
详细信息
    作者简介:

    陈继林,1986年出生,男,河北邢台人,博士,长期从事先进特殊钢线材的研发及应用工作,E-mail:chenjl@xtsteel.com

  • 中图分类号: TF76,TG161

Study on the evolution law of surface decarburization of Cr-Mo-V cold heading steel

  • 摘要: 研究了冷镦钢40CrMoV加热温度、加热时间及表面处理对脱碳层深度和组织形貌的影响,并分析了表面脱碳随温度变化的演变机理。结果表明,冷镦钢40CrMoV在700~1100 ℃加热时,其总脱碳层深度随温度的升高逐渐增大, 750~850 ℃为完全脱碳层生成的敏感温度区间,其在800 ℃时达到峰值;保温时间的延长使得脱碳层深度进一步加深;表面车削处理后使总脱碳层降低50%,完全脱碳层得到恶化。对冷镦钢40CrMoV在工业生产中表面脱碳的控制提出了建议。
  • 图  1  热处理工艺曲线

    Figure  1.  Heat treatment process curve

    图  2  原始试验钢在不同温度下保温30 min的脱碳组织

    (a)700 ℃;(b) 750 ℃;(c) 800 ℃;(d) 850 ℃;(e) 900 ℃;(f) 950 ℃;(g) 1000 ℃;(h) 1050 ℃; (i) 1100℃

    Figure  2.  Decarburization of original experimental steels at different temperatures

    图  3  不同温度下钢的表面脱碳层变化规律

    Figure  3.  The variation of decarburized depth of steel at different heating temperatures

    图  4  试验钢脱碳层深度在不同加热时间下的变化规律

    (a)总脱碳层 ; (b)完全脱碳层

    Figure  4.  The variation of decarburized depth of steel at different heating times

    图  5  车削试验钢在不同温度下的脱碳组织

    Figure  5.  Decarburization of turning experimental steels at different temperatures

    (a)750 ℃,60 min; (b) 800 ℃,60 min ;(c) 850 ℃,60 min

    图  6  车削试验钢脱碳层深度在不同加热温度下的变化规律

    (a) 总脱碳层 ;(b) 完全脱碳层

    Figure  6.  The variation of decarburized depth of turning experimental steel at different heating temperatures

    图  7  不同温度下的脱碳机制示意

    (a) 脱碳相图; (b) A1<T<A3; (c) A3<T<G; (d) G<T

    Figure  7.  Schematic of decarburization in different temperature ranges

    图  8  冷镦钢表面脱碳失效分析

    (a) 缺陷外貌; (b) R角断裂宏观图; (c) R角断裂扫描图; (d) R角断裂金相图; (e) 螺纹断裂宏观图; (f) 螺纹断裂扫描图; (g) 螺纹断裂金相图

    Figure  8.  Failure analysis of surface decarburization of cold headed steel

    表  1  高强度冷镦钢的主要化学成分

    Table  1.   Main chemical composition of high strength cold heading steel %

    CSiMnPSCrMoV
    0.400.180.820.0010.00080.980.220.02
    下载: 导出CSV
  • [1] Dong Han, Lian Xintong, Hu Chundong, et al. High performance steels: The scenario of theory and technology[J]. Acta. Metall. Sin., 2020,56(4):558−582. (董瀚, 廉心桐, 胡春东, 等. 钢的高性能化理论与技术进展[J]. 金属学报, 2020,56(4):558−582. doi: 10.11900/0412.1961.2020.00058
    [2] Hu Chundong, Meng Li, Dong Han. Research and development of ultrahigh strength steels[J]. Trans. Mater. Heat Treat., 2016,37(11):178−183. (胡春东, 孟利, 董瀚. 超高强度钢的研究进展[J]. 材料热处理学报, 2016,37(11):178−183. doi: 10.13289/j.issn.1009-6264.2016.11.030
    [3] Hui Weijun, Dong Han, Weng Yuqing. Research and development trends of high strength steel for bolts[J]. Mater. Mech. Eng., 2002,26(11):1−5. (惠卫军, 董瀚, 翁宇庆. 高强度螺栓钢的发展动向[J]. 机械工程材料, 2002,26(11):1−5. doi: 10.3969/j.issn.1000-3738.2002.11.001
    [4] Qiu C, Zurob H S, Hutchinson C R. The coupled solute drag effect during ferrite growth in Fe–C–Mn–Si alloys using controlled decarburization[J]. Acta Mater., 2015,100:333−343. doi: 10.1016/j.actamat.2015.08.065
    [5] Zhang Kai, Chen Yinli, Sun Yanhui, et al. Effect of H2O(g) on decarburization of 55SiCr spring steel during the heating process[J]. Acta. Metall. Sin., 2018,54(10):1350−1358. (张凯, 陈银莉, 孙彦辉, 等. 加热过程中H2O(g)对55SiC弹簧钢脱碳的影响[J]. 金属学报, 2018,54(10):1350−1358. doi: 10.11900/0412.1961.2017.00558
    [6] Yuan J H, Zhan Q, Huang J, et al. Decarburization mechanisms of WC-Co during thermal spraying: Insights from controlled carbon loss and microstructure characterization[J]. Mater. Chem. Phys., 2013,142:165−171. doi: 10.1016/j.matchemphys.2013.06.052
    [7] Wang X J, Wei L Q, Zhou X, et al. A superficial coating to improve oxidation and decarburization resistance of bearing steel at high temperature[J]. Appl. Surf. Sci., 2012,258:4977−4982. doi: 10.1016/j.apsusc.2012.01.135
    [8] Song Z Q. Oxidation and decarburization study and prediction of M2 steel in heating process [D]. Anshan: Liaoning Science and Technology, 2017: 12.
    [9] Wang Ningtao, Li Shilin, Ruan Shipeng, et al. Effect of finish rolling and spinning temperature on phase structure of iron oxide skin of SCM435 wire rod[J]. Special Steel, 2019,40(4):4. (王宁涛, 李世琳, 阮士朋, 等. 精轧和吐丝温度对SCM435线材氧化铁皮物相结构的影响[J]. 特殊钢, 2019,40(4):4. doi: 10.3969/j.issn.1003-8620.2019.04.002
    [10] Ma H Y, He Y S, Liu Y, et al. Effects of precipitation on the scale and grain growth in 9% Cr tempered martensite steel upon steam oxidation[J]. Mater. Charact., 2020, 167: 1.
    [11] Liu Y B, Zhang W, Tong Q, et al. Effects of Si and Cr on complete decarburization behavior of high carbon steels in atmosphere of 2vol. % O2[J]. J Iron Steel Res Int, 2016,23(12):1316. doi: 10.1016/S1006-706X(16)30194-7
    [12] Liang Z Y, Wang Y G, Gui Y, et al. Micro-structural evolution of oxide scales formed on a Nb-stabilizing heat-resistant steel at the initial stage in high-temperature water vapor[J]. Mater. Chem. Phys., 2020,242:1.
    [13] Hu Lei, Wang Lei, Ma Han. Behaviors of oxidation and decarburization on surfaces of high carbon steel wire rods[J]. J Iron Steel Res Int, 2016,28(3):67. (胡磊, 王雷, 麻晗. 高碳钢盘条的表面氧化与脱碳行为[J]. 钢铁研究学报, 2016,28(3):67. doi: 10.13228/j.boyuan.issn1001-0963.20150280
    [14] Wang Ping, Shen Qiancheng, Wu Xuming, et al. Effect of heating atmosphere on oxidation and decarburization properties of GCr15 bearing steel[J]. Hot Wor. Technol., 2018,47(22):78. (王萍, 沈千成, 吴旭明, 等. 加热气氛对 GCr15 轴承钢氧化和脱碳特性的影响[J]. 热加工工艺, 2018,47(22):78.
    [15] Xu Le, Chen Liang, Chen Gaojin, et al. Oxidation decarburization characteristics and fatigue properties of 65Si2MnW spring steel[J]. Heat Treatment of Metals, 2018,43(8):83−89. (徐乐, 陈良, 陈高进, 等. 65Si2MnW弹簧钢的氧化脱碳特性及疲劳性能[J]. 金属热处理, 2018,43(8):83−89.
    [16] Nomura M, Morimoto H, Toyama M. Calculation of ferrite decarburizing depth, considering chemical composition of steel and heating condition[J]. ISIJ Int. 2000, 40: 619-623.
    [17] Zhao F, Wu M, Jiang Bo, et al. The effect of carbon contents on intragranular ferrite formed in the V-Ti-N microalloyed steel with a carbon content gradient prepared by controlling the surface decarburization[J]. Mater. Charact., 2018,140:217−224. doi: 10.1016/j.matchar.2018.04.014
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  73
  • HTML全文浏览量:  18
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-26
  • 刊出日期:  2023-01-13

目录

    /

    返回文章
    返回