留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氯盐环境下600 MPa级耐蚀钢筋腐蚀行为研究

李霈 袁静 黄吉祥 闫博 阴树标 雷霆

李霈, 袁静, 黄吉祥, 闫博, 阴树标, 雷霆. 氯盐环境下600 MPa级耐蚀钢筋腐蚀行为研究[J]. 钢铁钒钛, 2023, 44(3): 123-130. doi: 10.7513/j.issn.1004-7638.2023.03.019
引用本文: 李霈, 袁静, 黄吉祥, 闫博, 阴树标, 雷霆. 氯盐环境下600 MPa级耐蚀钢筋腐蚀行为研究[J]. 钢铁钒钛, 2023, 44(3): 123-130. doi: 10.7513/j.issn.1004-7638.2023.03.019
Li Pei, Yuan Jing, Huang Jixiang, Yan Bo, Yin Shubiao, Lei Ting. Study on the corrosion behavior of a 600 MPa corrosion-resistant steel barin a chloride environment[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(3): 123-130. doi: 10.7513/j.issn.1004-7638.2023.03.019
Citation: Li Pei, Yuan Jing, Huang Jixiang, Yan Bo, Yin Shubiao, Lei Ting. Study on the corrosion behavior of a 600 MPa corrosion-resistant steel barin a chloride environment[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(3): 123-130. doi: 10.7513/j.issn.1004-7638.2023.03.019

氯盐环境下600 MPa级耐蚀钢筋腐蚀行为研究

doi: 10.7513/j.issn.1004-7638.2023.03.019
详细信息
    作者简介:

    李霈,1996年出生,男,河北张家口人,硕士研究生,研究方向:钢铁材料腐蚀与应用,E-mail:lp1277504201@163.com

    通讯作者:

    阴树标,男,博士,副教授,长期从事先进钢铁材料强化机制及腐蚀机理的研究工作,E-mail:278912571@qq.com

  • 中图分类号: TF76,TU375

Study on the corrosion behavior of a 600 MPa corrosion-resistant steel barin a chloride environment

  • 摘要: 以普通600 MPa级高强抗震钢筋HRB600E和经过合金调控后的同级别耐蚀钢筋为试验对象,通过周期浸润试验、电化学试验、表面分析技术和物相分析技术研究了氯盐环境下Cr、V对600 MPa级耐蚀钢筋腐蚀行为。结果表明,耐蚀合金的加入促进基体中贝氏体组织产生,减缓了铁素体阳极腐蚀进程;V、Cr元素的协同作用能够阻碍Cl下渗,有效延缓锈层生长速度,360 h周期浸润后耐蚀钢筋腐蚀速率下降;Cr-V体系元素调控下耐蚀钢筋电化学性质自腐蚀电位提升,钝化后电位正移,腐蚀电流密度下降;耐蚀钢筋钝化后交流阻抗值显著提升,在混凝土碱性环境中耐腐蚀性能优异;合金元素调控改善了钢筋腐蚀产物的物相组成,耐蚀钢筋后期腐蚀产物中α-FeOOH及γ-FeOOH 占比更高,且内锈层有尖晶石结构产物FeCr2O4富集,增加了内锈层的致密度和稳定性。
  • 图  1  HRB600cE(a)和HRB600E(b)钢筋的微观组织结构

    Figure  1.  Microstructures of HRB600cE (a) and HRB600E (b) bars by electron microscope

    图  2  HRB600cE and HRB600E不同时长下腐蚀速率(a)和年腐蚀深度(b)

    Figure  2.  Corrosion rate (a) and annual corrosion depth (b) of HRB600cE and HRB600E

    图  3  HRB600cE不同浸润时长下外锈层腐蚀宏观形貌

    Figure  3.  Corrosion profile of the outer rust layer at different immersion time of HRB600cE

    (a)72 h; (b)144 h; (c)360 h

    图  4  HRB600E不同浸润时长下外锈层腐蚀宏观形貌

    Figure  4.  Corrosion profile of the outer rust layer at different immersion time of HRB600E

    (a) 72 h; (b) 144 h; (c) 360 h

    图  5  试验钢周期浸润144、360 h后锈层微观形貌及能谱

    (a) HRB600cE,周期浸润144 h ;(b) HRB600E,周期浸润144 h ;(c) HRB600cE,周期浸润360 h;(d) HRB600E,周期浸润360 h

    Figure  5.  Micromorphology of the rust layer and XRD after 144 h and 360 h immersion

    图  6  HRB600cE(a)及HRB600E(b)不同时长下锈层腐蚀产物物相组成

    Figure  6.  XRD results of the rust layer components of HRB600cE(a) and HRB600E(b) rebars for different corrosion times

    图  7  HRB600cE及HRB600E在2.0%NaCl溶液中原始态及钝化态极化曲线

    Figure  7.  Polarization curves of HRB600cE and HRB600E rebars in a 2.0% NaCl solution

    图  8  HRB600cE及HRB600E在2%NaCl溶液中交流阻抗曲线

    Figure  8.  Nyquist plots of HRB600cE and HRB600E rebars in a 2% NaCl solution

    表  1  试验钢化学成分

    Table  1.   Chemical compositions of HRB600cE and HRB600E bar %

    钢种CSiMnSPCrMo+Ni+CuVNbFe
    HRB600cE≤0.200.501.15≤0.004≤0.018 0.75~1.10≥1.10≤0.10余量
    HRB600E0.260.701.54≤0.008≤0.025≤0.15≤0.012
    下载: 导出CSV

    表  2  锈层致密处元素组成

    Table  2.   Chemical compositions of the compact rust

    牌号浸润时长/h元素占比/%
    OCrVFeCl
    HRB600cE1445.3210.4210.25493.6840.320
    36030.8350.1580.30167.7260.980
    HRB600E14412.8220.02384.3412.267
    36027.9420.33169.0332.182
    下载: 导出CSV

    表  3  HRB600cE与HRB600E极化曲线拟合结果

    Table  3.   Fitting results of the polarization curves of HRB600cE and HRB600E

    钢筋状态Ecorr/mVicorr/(μA·cm−2)Ep/mV
    HRB600cE原始态6831.340
    HRB600cE钝化后6230.7829
    HRB600E原始态76540
    HRB600E钝化后7343.320
    下载: 导出CSV
  • [1] Ye Zhanchun, Guan Chunlong. Study on corrosion resistance and wear resistance of new vanadium-containing weather proof steel for building[J]. Iron Steel Vanadium Titanium, 2019,40(4):116−120. (叶占春, 关春龙. 含钒新型建筑耐候钢的耐蚀及耐磨性能研究[J]. 钢铁钒钛, 2019,40(4):116−120. doi: 10.7513/j.issn.1004-7638.2019.04.022

    Ye Zhanchun, Guan Chunlong. Study on corrosion resistance and wear resistance of new vanadium-containing weather proof steel for building[J]. Iron Steel Vanadium Titanium, 2019, 40(4): 116-120. doi: 10.7513/j.issn.1004-7638.2019.04.022
    [2] Luo Yihua, Huang Yao, Yang Xuefeng, et al. Effect of P elements on mechanical properties and corrosion resistance of high strength weathering steel used in transmission tower[J]. Iron Steel Vanadium Titanium, 2019,40(1):142−147. (罗义华, 黄耀, 杨雪锋, 等. P元素对耐候高强钢铁塔力学性能和腐蚀性能的影响[J]. 钢铁钒钛, 2019,40(1):142−147. doi: 10.7513/j.issn.1004-7638.2019.01.025

    Luo Yihua, Huang Yao, Yang Xuefeng, et al. Effect of P elements on mechanical properties and corrosion resistance of high strength weathering steel used in transmission tower[J]. Iron Steel Vanadium Titanium, 2019, 40(1): 142-147. doi: 10.7513/j.issn.1004-7638.2019.01.025
    [3] Du Fengyin, Jin Zuquan, Zhao Tiejun, et al. Electrochemical chloride extraction from corrosion-resistant steel bar-reinforced concrete[J]. International Journal of Electrochemical Science, 2018,13:7076−7094. doi: 10.20964/2018.07.79
    [4] Xie Qiong, Shi Peiyang, Liu Chengjun, et al. Experimental studies on corrosion behaviour of ferritic stainless steel in HCl based solution[J]. Iron Steel Vanadium Titanium, 2015,36(4):114−118. (解琼, 史培阳, 刘承军, 等. 铁素体不锈钢在盐酸基溶液中的加速腐蚀行为研究[J]. 钢铁钒钛, 2015,36(4):114−118. doi: 10.7513/j.issn.1004-7638.2015.04.020

    Xie Qiong, Shi Peiyang, Liu Chengjun, et al. Experimental studies on corrosion behaviour of ferritic stainless steel in HCl based solution [J]. Iron Steel Vanadium Titanium, 2015, 36(4): 114-118. doi: 10.7513/j.issn.1004-7638.2015.04.020
    [5] Zhou Yu, Ye Yinghua, Xi Jie, et al. Experiment of properties deterioration of air- entrained concrete in seawater-aggressive and freeze-thaw environment[J]. Concrete, 2011,(12):18−20. (周煜, 叶英华, 袭杰, 等. 海水侵蚀环境与冻融交替作用下引气混凝土性能劣化试验[J]. 混凝土, 2011,(12):18−20. doi: 10.3969/j.issn.1002-3550.2011.12.006

    Zhou Yu, Ye Yinghua, Xi Jie, et al. Experiment of properties deterioration of air- entrained concrete in seawater-aggressive and freeze-thaw environment[J]. Concrete, 2011(12): 18-20. doi: 10.3969/j.issn.1002-3550.2011.12.006
    [6] Bao Huiming, Zhao Xuewen, Xiong Xin, et al. Study of sisal fiber concrete 's anti- erosion property in marine environment[J]. Concrete, 2012,(6):23−24. (包惠明, 赵学文, 熊鑫, 等. 海洋环境下剑麻纤维混凝土抗侵蚀试验研究[J]. 混凝土, 2012,(6):23−24. doi: 10.3969/j.issn.1002-3550.2012.06.008

    Bao Huiming, Zhao Xuewen, Xiong Xin, et al. Study of sisal fiber concrete 's anti- erosion property in marine environment[J]. Concrete, 2012(6): 23-24. doi: 10.3969/j.issn.1002-3550.2012.06.008
    [7] Qin Fangcheng, Qi Haiquan, Meng Zhengbing, et al. Advances in high corrosion resistant rebar for ocean engineering[J]. Materials Reports, 2022,36(6):158−164. (秦芳诚, 亓海全, 孟征兵, 等. 海洋工程高抗蚀筋材研究进展[J]. 材料导报, 2022,36(6):158−164.

    Qin Fangcheng, Qi Haiquan, Meng Zhengbing, et al. Advances in high corrosion resistant rebar for ocean engineering[J]. Materials Reports, 2022, 36(6): 158-164.
    [8] Sun Lijuan, Liu Bingwei, Sun Yongjuan. Influence of seawater erosion on the mechanical properties and chloride ion transport of fiber concrete[J]. Concrete, 2022,(6):24−28. (孙丽娟, 刘兵伟, 孙永娟. 海水侵蚀对纤维混凝土力学性能和氯离子传输性能的影响[J]. 混凝土, 2022,(6):24−28. doi: 10.3969/j.issn.1002-3550.2022.06.005

    Sun Lijuan, Liu Bingwei, Sun Yongjuan. Influence of seawater erosion on the mechanical properties and chloride ion transport of fiber concrete[J]. Concrete, 2022(6): 24-28. doi: 10.3969/j.issn.1002-3550.2022.06.005
    [9] Liu Tao, Chen Yongfeng, Zhu Libin, et al. Effect of alloy adjustment on corrosion resistance of steel rebar[J]. Journal of Iron and Steel Research, 2022,34(2):156−161. (刘涛, 陈永峰, 朱利斌, 等. 合金调控对钢筋耐蚀性能的影响[J]. 钢铁研究学报, 2022,34(2):156−161.

    Liu Tao, Chen Yongfeng, Zhu Libin, et al. Effect of alloy adjustment on corrosion resistance of steel rebar[J]. Journal of Iron and Steel Research, 2022, 34(2): 156-161.
    [10] Ai Zhiyong, Sun Wei, Jiang Jinyang. Recent status of research on corrosion of low alloy corrosion resistant steel and analysis on existing eroblems[J]. Corrosion Science and Protection Technology, 2015,27(6):525−536. (艾志勇, 孙伟, 蒋金洋. 低合金耐蚀钢筋锈蚀研究现状及存在的问题分析[J]. 腐蚀科学与防护技术, 2015,27(6):525−536.

    Ai Zhiyong, Sun Wei, Jiang Jinyang. Recent status of research on corrosion of low alloy corrosion resistant steel and analysis on existing eroblems[J]. Corrosion Science and Protection Technology, 2015, 27(6): 525-536.
    [11] 田玉琬. 海工用高强耐蚀钢筋的腐蚀机理及阻锈剂研究[D]. 北京: 北京科技大学, 2021.

    Tian Yuwan. Study on corrosion mechanism of the high-strength corrosion-resistance steel reinforcement and inhibitor in marine structures [D]. Beijing: University of Science and Technology Beijing, 2021.
    [12] Chen Huande, Ma Han, Zhang Yu, et al. Microstructure and tensile properties of 00Cr10MoV corrosion resistant rebar for ocean engineering[J]. Transaction of Materials and Heat Treament, 2019,40(5):103−108. (陈焕德, 麻晗, 张宇, 等. 海洋工程用00Cr10MoV耐蚀钢筋的组织及拉伸性能[J]. 材料热处理学报, 2019,40(5):103−108.

    Chen Huande, Ma Han, Zhang Yu, et al. Microstructure and tensile properties of 00 Cr10 MoV corrosion resistant rebar for ocean engineering[J]. Transaction of Materials and Heat Treament, 2019, 40(5): 103-108.
    [13] 甘玲. 高强耐蚀钢筋在氯盐环境下的腐蚀行为[D]. 马鞍山: 安徽工业大学, 2017.

    Gan Ling. Corrosion behavior of high-strength corrosion resistant rebar in a solution of chlorine salt[D]. Ma, anshan: Anhui University of Technology, 2017.
    [14] Chen Xinhua, Dong Junhua, Han Enhou, et al. Effect of Cu-Mn on the corrosion performance of carbon steels in wet/ dry environments[J]. Materials Protection, 2007,40(10):19−22,93-94. (陈新华, 董俊华, 韩恩厚, 等. 干湿交替环境下Cu、Mn合金化对低合金钢腐蚀行为的影响[J]. 材料保护, 2007,40(10):19−22,93-94. doi: 10.3969/j.issn.1001-1560.2007.10.006

    Chen Xinhua, Dong Junhua, Han Enhou, et al. Effect of Cu-Mn on the corrosion performance of carbon steels in wet/ dry environments [J]. Materials Protection, 2007, 40(10): 19-22, 93-94. doi: 10.3969/j.issn.1001-1560.2007.10.006
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  264
  • HTML全文浏览量:  89
  • PDF下载量:  122
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-23
  • 刊出日期:  2023-06-30

目录

    /

    返回文章
    返回