Optimization of flotation process of ilmenite based on Box-Behnken response surface methodology
-
摘要: 针对钛铁矿浮选分离的难题,对钛铁矿粗选进行了详细的单因素变量试验,确定了影响钛铁矿浮选的主要参数及其最佳工艺条件。为了解浮选时各参数的交互作用并进行优化,采用响应面法进行了详细研究。结果表明,试验建立的精矿TiO2品位及回收率响应面模型可靠,硫酸与柴油的交互作用对精矿TiO2品位及回收率具有显著影响。在优化后的最佳工艺条件(硫酸用量为1.61 kg/t、MOH用量为2.82 kg/t,柴油用量为0.81 kg/t)下进行验证试验,得到TiO2品位为32.58%,回收率为77.60%的钛粗选精矿,这一结果与模型预测值相吻合。在粗选的基础上进行全流程开路浮选试验,得到了TiO2品位为47.21%,回收率为49.28%的钛精矿。Abstract: In order to address the complex challenge of ilmenite flotation separation, an extensive single-factor variable test was conducted to investigate the parameters influencing ilmenite flotation and determine the optimal process conditions. To gain a comprehensive understanding of the parameter interactions and optimize the flotation process, a detailed study utilizing response surface methodology was carried out in this research. The results obtained demonstrated the reliability of the response surface model for the TiO2 concentrate grade and recovery, established based on the experimental data. Notably, the interaction between sulfuric acid and diesel fuel exhibited a significant effect on both the TiO2 grade and recovery of the concentrate. To validate the findings, a validation test was conducted under the optimized process conditions, consisting of a sulfuric acid dosage of 1.61 kg/t, MOH dosage of 2.82 kg/t, and diesel fuel dosage of 0.81 kg/t. The resulting roughing concentrate exhibited a TiO2 grade of 32.58% and a recovery of 77.60%, closely aligned with the model predictions. Subsequently, an open circuit flotation test was performed based on the roughing stage, yielding a titanium concentrate with a TiO2 grade of 47.21% and a recovery of 49.28%.
-
Key words:
- ilmenite /
- flotation /
- response surface methodology /
- recovery rate
-
表 1 矿样化学多元素分析结果
Table 1. Multi-element chemical analysis of raw ore
% TFe TiO2 Al2O3 MgO CaO SiO2 18.27 17.36 6.23 12.41 8.90 28.31 表 2 原矿中主要矿物的含量
Table 2. Content of main minerals in the raw ore
% 钛铁矿 钛磁
铁矿赤褐
铁矿橄榄石 辉石 角闪石 长石 石英 其他 27.3 3.6 8.4 20.2 18.3 6.4 5.2 9.3 1.3 表 3 中心组合设计因素及水平
Table 3. Factors and levels of center composite design
kg/t 因素 编码 水平 −1 0 1 硫酸用量 A 1.40 1.60 1.80 MOH用量 B 2.70 2.90 3.10 柴油用量 C 0.56 0.77 0.98 表 4 因素与水平编码及其试验值
Table 4. Factors and level codes and their corresponding test values
试验编号 因素 TiO2品位/% TiO2回收率/% E/% A B C 1 1.40 2.70 0.77 31.05 80.27 52.80 2 1.80 2.70 0.77 33.90 72.35 52.66 3 1.40 3.10 0.77 28.01 83.26 47.22 4 1.80 3.10 0.77 30.51 76.98 49.49 5 1.40 2.90 0.56 30.36 81.36 51.97 6 1.80 2.90 0.56 33.35 72.77 52.05 7 1.40 2.90 0.98 30.18 82.44 52.24 8 1.80 2.90 0.98 32.26 76.19 52.50 9 1.60 2.70 0.56 32.58 74.66 52.03 10 1.60 3.10 0.56 29.36 79.27 48.33 11 1.60 2.70 0.98 32.49 76.12 52.88 12 1.60 3.10 0.98 29.24 80.81 48.98 13 1.60 2.90 0.77 32.24 78.17 53.82 14 1.60 2.90 0.77 31.94 78.54 53.49 15 1.60 2.90 0.77 32.13 78.44 53.79 16 1.60 2.90 0.77 31.98 78.70 53.67 17 1.60 2.90 0.77 32.31 78.19 53.97 表 5 精矿TiO2品位模型回归方差分析
Table 5. Analysis of variance for response surface quadratic model of TiO2 grade
来源 平方和 自由度 均方 F值 P值 差异性 模型 39.62 9 4.4 121.77 < 0.0001 极显著 A 13.57 1 13.57 375.44 < 0.0001 极显著 B 20.8 1 20.8 575.41 < 0.0001 极显著 C 0.2738 1 0.2738 7.57 0.0284 显著 AB 0.0306 1 0.0306 0.8472 0.388 不显著 AC 0.207 1 0.207 5.73 0.048 显著 BC 0.0002 1 0.0002 0.0062 0.9393 不显著 A2 0.4211 1 0.4211 11.65 0.0112 显著 B2 3.69 1 3.69 102.1 < 0.0001 极显著 C2 0.2985 1 0.2985 8.26 0.0239 显著 残差 0.2531 7 0.0362 失拟 0.1505 3 0.0502 1.96 0.2628 不显著 纯误差 0.1026 4 0.0257 总离差 39.87 16 注:方差异性检查结果通过P值判断,当P≤0.0001时,差异极显著;当0.0001<P≤0.05时,差异显著;当P>0.05时,差异不显著。下同。 表 6 精矿TiO2回收率模型回归方差分析
Table 6. Analysis of variance for response surface quadratic model of TiO2 recovery
来源 平方和 自由度 均方 F值 P值 差异性 模型 150.26 6 25.04 124.35 < 0.0001 极显著 A 105.37 1 105.37 523.24 < 0.0001 极显著 B 35.8 1 35.8 177.75 < 0.0001 极显著 C 7.04 1 7.04 34.98 0.0001 极显著 AB 0.6762 1 0.6762 3.36 0.0968 不显著 AC 1.37 1 1.37 6.78 0.0263 显著 BC 0.0019 1 0.0019 0.0092 0.9254 不显著 残差 2.01 10 0.2014 失拟 1.8 6 0.3007 5.75 0.0562 不显著 纯误差 0.2094 4 0.0523 总离差 152.27 16 表 7 精矿TiO2品位模型拟合数据
Table 7. The modeling fit data of TiO2 grade
标准偏差 平均值 变异系数 相关系数 正决定系数 预测决定系数 0.1901 31.41 0.6054 0.9937 0.9855 0.9356 表 8 精矿TiO2回收率模型拟合数据
Table 8. The modeling fit data of TiO2 recovery
标准偏差 平均值 变异系数 相关系数 正决定系数 预测决定系数 0.4488 78.15 0.5742 0.9868 0.9788 0.9464 表 9 浮选开路试验结果
Table 9. The testing results of open-circuit flotation
产品 产率/% TiO2品位/% TiO2回收率/% 硫精矿 6.62 14.22 5.42 钛精矿 18.12 47.21 49.28 中1 11.12 14.56 9.33 中2 6.83 29.83 11.74 中3 3.32 35.99 6.88 尾矿 53.99 5.58 17.35 给矿 100.00 17.36 100.00 -
[1] Zhai J, Chen P, Sun W, et al. A review of mineral processing of ilmenite by flotation[J]. Minerals Engineering, 2020,157:106558. doi: 10.1016/j.mineng.2020.106558 [2] Du Y, Meng Q, Yuan Z, et al. Study on the flotation behavior and mechanism of ilmenite and titanaugite with sodium oleate[J]. Minerals Engineering, 2020,152:106366. doi: 10.1016/j.mineng.2020.106366 [3] Liu W, Zhang J, Wang W, et al. Flotation behaviors of ilmenite, titanaugite, and forsterite using sodium oleate as the collector[J]. Minerals Engineering, 2015,72:1−9. doi: 10.1016/j.mineng.2014.12.021 [4] Mulaba-Bafubiandi A F, Mukendi-Ngalula D, Waanders F B. Ilmenite mineral's recovery from beach sand tailings[J]. Hyperfine Interactions, 2002,139(1-4):485−494. [5] Tian J, Xu L, Yang Y, et al. Selective flotation separation of ilmenite from titanaugite using mixed anionic/cationic collectors[J]. International Journal of Mineral Processing, 2017,166:102−107. doi: 10.1016/j.minpro.2017.07.006 [6] Yuan Z, Zhao X, Meng Q, et al. Study on surface magnetization recover ilmenite from titanaugite using surfactant sodium oleate[J]. Separation Science and Technology, 2020,55(15):2812−2821. doi: 10.1080/01496395.2019.1641522 [7] Zhai J, Chen P, Wang H, et al. Flotability improvement of ilmenite using attrition-scrubbing as a pretreatment method[J]. Minerals, 2017,7(1):13. doi: 10.3390/min7010013 [8] Zhang Chaofan, Yu Qingyao, Cao Yijun, et al. Research progress of ilmenite flotation reagents and their surface modification methods[J]. The Chinese Journal of Nonferrous Metals, 2021,31(12):3675−3689. (张超凡, 余青瑶, 曹亦俊, 等. 钛铁矿浮选药剂及其表面改性的研究进展[J]. 中国有色金属学报, 2021,31(12):3675−3689.Zhang Chaofan, Yu Qingyao, Cao Yijun, et al. Research progress of ilmenite flotation reagents and their surface modification methods[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(12): 3675−3689. [9] Dong Wenchao, Liu Jian, Bai Xu, et al. Action mechanism and progress of ilmenite flotation[J]. Reagents Conservation and Utilization of Mineral Resources, 2019,39(4):159−164,171. (董文超, 刘建, 白旭, 等. 钛铁矿浮选药剂作用机理及进展[J]. 矿产保护与利用, 2019,39(4):159−164,171.Dong Wenchao, Liu Jian, Bai Xu, et, al. Action mechanism and progress of ilmenite flotation [J]. Reagents Conservation and Utilization of Mineral Resources, 2019, 39(4): 159-164, 171. [10] Wu Guangjin, Li Caixia, Liu Guiqi, et al. Phosphorus processing test and mechanism of optimized tailings overflow by response surface method[J]. Non-Metallic Mines, 2023,46(2):70−74. (吴广金, 李彩霞, 刘桂祺, 等. 响应面法优化铁尾矿溢流选磷试验及机理研究[J]. 非金属矿, 2023,46(2):70−74. doi: 10.3969/j.issn.1000-8098.2023.02.017Wu Guangjin, Li Caixia, Liu Guiqi, et, al. Phosphorus processing test and mechanism of optimized tailings overflow by response surface method [J]. Non-Metallic Mines, 2023, 46(2): 70-74. doi: 10.3969/j.issn.1000-8098.2023.02.017 -