留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Box-Behnken响应面法的钛铁矿浮选工艺优化研究

戴川 陈攀 孙伟 王洪彬 杨耀辉

戴川, 陈攀, 孙伟, 王洪彬, 杨耀辉. 基于Box-Behnken响应面法的钛铁矿浮选工艺优化研究[J]. 钢铁钒钛, 2023, 44(5): 1-7. doi: 10.7513/j.issn.1004-7638.2023.05.001
引用本文: 戴川, 陈攀, 孙伟, 王洪彬, 杨耀辉. 基于Box-Behnken响应面法的钛铁矿浮选工艺优化研究[J]. 钢铁钒钛, 2023, 44(5): 1-7. doi: 10.7513/j.issn.1004-7638.2023.05.001
Dai Chuan, Chen Pan, Sun Wei, Wang Hongbin, Yang Yaohui. Optimization of flotation process of ilmenite based on Box-Behnken response surface methodology[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(5): 1-7. doi: 10.7513/j.issn.1004-7638.2023.05.001
Citation: Dai Chuan, Chen Pan, Sun Wei, Wang Hongbin, Yang Yaohui. Optimization of flotation process of ilmenite based on Box-Behnken response surface methodology[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(5): 1-7. doi: 10.7513/j.issn.1004-7638.2023.05.001

基于Box-Behnken响应面法的钛铁矿浮选工艺优化研究

doi: 10.7513/j.issn.1004-7638.2023.05.001
基金项目: 国家重点研发计划项目(2019YFC1803501);国家自然科学基金(52074357);湖南省自然科学基金(2022JJ30713)。
详细信息
    作者简介:

    戴川,1989年出生,男,重庆铜梁人,博士研究生,主要从事选矿工艺、选矿药剂设计及理论研究,E-mail: daichuan1989@163.com

    通讯作者:

    陈攀 ,1984年出生,男,广西象州人,博士,教授,博士生导师,研究方向为战略矿产资源的高效开发与高质化利用、战略矿产利用的药剂分子设计开发及重金属污染土地生态修复等,E-mail:chenpanscu@163.com

  • 中图分类号: TD952

Optimization of flotation process of ilmenite based on Box-Behnken response surface methodology

  • 摘要: 针对钛铁矿浮选分离的难题,对钛铁矿粗选进行了详细的单因素变量试验,确定了影响钛铁矿浮选的主要参数及其最佳工艺条件。为了解浮选时各参数的交互作用并进行优化,采用响应面法进行了详细研究。结果表明,试验建立的精矿TiO2品位及回收率响应面模型可靠,硫酸与柴油的交互作用对精矿TiO2品位及回收率具有显著影响。在优化后的最佳工艺条件(硫酸用量为1.61 kg/t、MOH用量为2.82 kg/t,柴油用量为0.81 kg/t)下进行验证试验,得到TiO2品位为32.58%,回收率为77.60%的钛粗选精矿,这一结果与模型预测值相吻合。在粗选的基础上进行全流程开路浮选试验,得到了TiO2品位为47.21%,回收率为49.28%的钛精矿。
  • 图  1  钛铁矿粗选工艺流程

    Figure  1.  The flow chart of ilmenite roughing process

    图  2  硫酸用量对精矿品位及回收率的影响

    Figure  2.  Effect of sulfuric acid dosage on the grade and recovery of concentrate

    图  3  MOH用量对精矿品位及回收率的影响

    Figure  3.  Effect of MOH dosage on the grade and recovery of concentrate

    图  4  柴油用量对精矿品位及回收率的影响

    Figure  4.  Effect of diesel fuel dosage on the grade and recovery of concentrate

    图  5  精矿TiO2品位与回收率模型预测值与实际值对比

    Figure  5.  Comparison of actual and predicted values of TiO2 grade and recovery

    图  6  各因素交互作用对精矿TiO2品位影响的响应曲面图及等高线图

    Figure  6.  Response surface diagrams of interaction of various factors on TiO2 grade

    图  7  各因素交互作用对精矿TiO2回收率影响的响应曲面图及等高线图

    Figure  7.  Response surface diagrams of interaction of various factors on TiO2 recovery

    图  8  开路浮选流程

    Figure  8.  The open-circuit flotation process

    表  1  矿样化学多元素分析结果

    Table  1.   Multi-element chemical analysis of raw ore %

    TFeTiO2Al2O3MgOCaOSiO2
    18.2717.366.2312.418.9028.31
    下载: 导出CSV

    表  2  原矿中主要矿物的含量

    Table  2.   Content of main minerals in the raw ore %

    钛铁矿钛磁
    铁矿
    赤褐
    铁矿
    橄榄石辉石角闪石长石石英其他
    27.33.68.420.218.36.45.29.31.3
    下载: 导出CSV

    表  3  中心组合设计因素及水平

    Table  3.   Factors and levels of center composite design kg/t

    因素编码水平
    −101
    硫酸用量A1.401.601.80
    MOH用量B2.702.903.10
    柴油用量C0.560.770.98
    下载: 导出CSV

    表  4  因素与水平编码及其试验值

    Table  4.   Factors and level codes and their corresponding test values

    试验编号因素TiO2品位/%TiO2回收率/%E/%
    ABC
    11.402.700.7731.0580.2752.80
    21.802.700.7733.9072.3552.66
    31.403.100.7728.0183.2647.22
    41.803.100.7730.5176.9849.49
    51.402.900.5630.3681.3651.97
    61.802.900.5633.3572.7752.05
    71.402.900.9830.1882.4452.24
    81.802.900.9832.2676.1952.50
    91.602.700.5632.5874.6652.03
    101.603.100.5629.3679.2748.33
    111.602.700.9832.4976.1252.88
    121.603.100.9829.2480.8148.98
    131.602.900.7732.2478.1753.82
    141.602.900.7731.9478.5453.49
    151.602.900.7732.1378.4453.79
    161.602.900.7731.9878.7053.67
    171.602.900.7732.3178.1953.97
    下载: 导出CSV

    表  5  精矿TiO2品位模型回归方差分析

    Table  5.   Analysis of variance for response surface quadratic model of TiO2 grade

    来源平方和自由度均方FP差异性
    模型39.6294.4121.77< 0.0001极显著
    A13.57113.57375.44< 0.0001极显著
    B20.8120.8575.41< 0.0001极显著
    C0.273810.27387.570.0284显著
    AB0.030610.03060.84720.388不显著
    AC0.20710.2075.730.048显著
    BC0.000210.00020.00620.9393不显著
    A20.421110.421111.650.0112显著
    B23.6913.69102.1< 0.0001极显著
    C20.298510.29858.260.0239显著
    残差0.253170.0362
    失拟0.150530.05021.960.2628不显著
    纯误差0.102640.0257
    总离差39.8716
    注:方差异性检查结果通过P值判断,当P≤0.0001时,差异极显著;当0.0001<P≤0.05时,差异显著;当P>0.05时,差异不显著。下同。
    下载: 导出CSV

    表  6  精矿TiO2回收率模型回归方差分析

    Table  6.   Analysis of variance for response surface quadratic model of TiO2 recovery

    来源平方和自由度均方FP差异性
    模型150.26625.04124.35< 0.0001极显著
    A105.371105.37523.24< 0.0001极显著
    B35.8135.8177.75< 0.0001极显著
    C7.0417.0434.980.0001极显著
    AB0.676210.67623.360.0968不显著
    AC1.3711.376.780.0263显著
    BC0.001910.00190.00920.9254不显著
    残差2.01100.2014
    失拟1.860.30075.750.0562不显著
    纯误差0.209440.0523
    总离差152.2716
    下载: 导出CSV

    表  7  精矿TiO2品位模型拟合数据

    Table  7.   The modeling fit data of TiO2 grade

    标准偏差平均值变异系数相关系数正决定系数预测决定系数
    0.190131.410.60540.99370.98550.9356
    下载: 导出CSV

    表  8  精矿TiO2回收率模型拟合数据

    Table  8.   The modeling fit data of TiO2 recovery

    标准偏差平均值变异系数相关系数正决定系数预测决定系数
    0.448878.150.57420.98680.97880.9464
    下载: 导出CSV

    表  9  浮选开路试验结果

    Table  9.   The testing results of open-circuit flotation

    产品产率/%TiO2品位/%TiO2回收率/%
    硫精矿6.6214.225.42
    钛精矿18.1247.2149.28
    中111.1214.569.33
    中26.8329.8311.74
    中33.3235.996.88
    尾矿53.995.5817.35
    给矿100.0017.36100.00
    下载: 导出CSV
  • [1] Zhai J, Chen P, Sun W, et al. A review of mineral processing of ilmenite by flotation[J]. Minerals Engineering, 2020,157:106558. doi: 10.1016/j.mineng.2020.106558
    [2] Du Y, Meng Q, Yuan Z, et al. Study on the flotation behavior and mechanism of ilmenite and titanaugite with sodium oleate[J]. Minerals Engineering, 2020,152:106366. doi: 10.1016/j.mineng.2020.106366
    [3] Liu W, Zhang J, Wang W, et al. Flotation behaviors of ilmenite, titanaugite, and forsterite using sodium oleate as the collector[J]. Minerals Engineering, 2015,72:1−9. doi: 10.1016/j.mineng.2014.12.021
    [4] Mulaba-Bafubiandi A F, Mukendi-Ngalula D, Waanders F B. Ilmenite mineral's recovery from beach sand tailings[J]. Hyperfine Interactions, 2002,139(1-4):485−494.
    [5] Tian J, Xu L, Yang Y, et al. Selective flotation separation of ilmenite from titanaugite using mixed anionic/cationic collectors[J]. International Journal of Mineral Processing, 2017,166:102−107. doi: 10.1016/j.minpro.2017.07.006
    [6] Yuan Z, Zhao X, Meng Q, et al. Study on surface magnetization recover ilmenite from titanaugite using surfactant sodium oleate[J]. Separation Science and Technology, 2020,55(15):2812−2821. doi: 10.1080/01496395.2019.1641522
    [7] Zhai J, Chen P, Wang H, et al. Flotability improvement of ilmenite using attrition-scrubbing as a pretreatment method[J]. Minerals, 2017,7(1):13. doi: 10.3390/min7010013
    [8] Zhang Chaofan, Yu Qingyao, Cao Yijun, et al. Research progress of ilmenite flotation reagents and their surface modification methods[J]. The Chinese Journal of Nonferrous Metals, 2021,31(12):3675−3689. (张超凡, 余青瑶, 曹亦俊, 等. 钛铁矿浮选药剂及其表面改性的研究进展[J]. 中国有色金属学报, 2021,31(12):3675−3689.

    Zhang Chaofan, Yu Qingyao, Cao Yijun, et al. Research progress of ilmenite flotation reagents and their surface modification methods[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(12): 3675−3689.
    [9] Dong Wenchao, Liu Jian, Bai Xu, et al. Action mechanism and progress of ilmenite flotation[J]. Reagents Conservation and Utilization of Mineral Resources, 2019,39(4):159−164,171. (董文超, 刘建, 白旭, 等. 钛铁矿浮选药剂作用机理及进展[J]. 矿产保护与利用, 2019,39(4):159−164,171.

    Dong Wenchao, Liu Jian, Bai Xu, et, al. Action mechanism and progress of ilmenite flotation [J]. Reagents Conservation and Utilization of Mineral Resources, 2019, 39(4): 159-164, 171.
    [10] Wu Guangjin, Li Caixia, Liu Guiqi, et al. Phosphorus processing test and mechanism of optimized tailings overflow by response surface method[J]. Non-Metallic Mines, 2023,46(2):70−74. (吴广金, 李彩霞, 刘桂祺, 等. 响应面法优化铁尾矿溢流选磷试验及机理研究[J]. 非金属矿, 2023,46(2):70−74. doi: 10.3969/j.issn.1000-8098.2023.02.017

    Wu Guangjin, Li Caixia, Liu Guiqi, et, al. Phosphorus processing test and mechanism of optimized tailings overflow by response surface method [J]. Non-Metallic Mines, 2023, 46(2): 70-74. doi: 10.3969/j.issn.1000-8098.2023.02.017
  • 加载中
图(8) / 表(9)
计量
  • 文章访问数:  197
  • HTML全文浏览量:  41
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-12
  • 网络出版日期:  2023-11-04
  • 刊出日期:  2023-10-31

目录

    /

    返回文章
    返回