留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

加氧对碳化渣低温氯化选择性影响的热力学分析

岳东 温良英 陈荣 王建鑫 杨仰军

岳东, 温良英, 陈荣, 王建鑫, 杨仰军. 加氧对碳化渣低温氯化选择性影响的热力学分析[J]. 钢铁钒钛, 2023, 44(5): 53-60. doi: 10.7513/j.issn.1004-7638.2023.05.009
引用本文: 岳东, 温良英, 陈荣, 王建鑫, 杨仰军. 加氧对碳化渣低温氯化选择性影响的热力学分析[J]. 钢铁钒钛, 2023, 44(5): 53-60. doi: 10.7513/j.issn.1004-7638.2023.05.009
Yue Dong, Wen Liangying, Chen Rong, Wang Jianxin, Yang Yangjun. Thermodynamic analysis of the effect of oxygenation on the low-temperature chlorination selectivity of carbonized slag[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(5): 53-60. doi: 10.7513/j.issn.1004-7638.2023.05.009
Citation: Yue Dong, Wen Liangying, Chen Rong, Wang Jianxin, Yang Yangjun. Thermodynamic analysis of the effect of oxygenation on the low-temperature chlorination selectivity of carbonized slag[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(5): 53-60. doi: 10.7513/j.issn.1004-7638.2023.05.009

加氧对碳化渣低温氯化选择性影响的热力学分析

doi: 10.7513/j.issn.1004-7638.2023.05.009
基金项目: 国家自然科学基金(51974046)。
详细信息
    作者简介:

    岳东,1998年出生,男,重庆忠县人,博士,主要从事冶金过程表界面反应模拟研究,E-mail:cquyue133@163.com

    通讯作者:

    温良英,1966年出生,女,博士,教授,研究领域为资源综合利用、多相表界面反应与传递等相关研究,E-mail:cquwen@cqu.edu.cn

  • 中图分类号: TF823,X758

Thermodynamic analysis of the effect of oxygenation on the low-temperature chlorination selectivity of carbonized slag

  • 摘要: 利用Factsage热力学软件及数据库,计算分析了引入氧气对碳化钛渣中TiC和钙镁氧化物氯化的影响,以及加氧选择性强化碳化渣中TiC氯化反应的同时减少或抑制钙镁氧化物氯化反应的调控方案。结果表明,加氧低温氯化可促进渣中TiC的氯化反应进程,提高TiC的氯化率;当低温氯化反应温度为500 ℃时,在Cl2/TiC摩尔比为1.80~3.50范围内,MgO不发生氯化反应,氧气的引入可以使CaO氯化反应受到抑制,降低CaO氯化率;氯氧气体摩尔比为4.00:1.00,氯化反应使碳化渣中TiC质量分数减小至4.02%时,可将氯化气体切换为氯气与氮气的混合气体,进一步氯化渣中残留的TiC直至2.50%以下;此加氧分步氯化与不加氧直接氯化相比,氯气总消耗量可减少25.69%,CaO总氯化率可减少37.74%。
  • 图  1  碳化渣低温氯化各反应吉布斯自由能随温度的变化

    Figure  1.  Change of Gibbs free energy of each reaction of carbonized slag chlorination at low temperature with temperature

    图  2  TiC-Cl2-O2体系平衡物相随氯氧气体分压变化规律

    Figure  2.  The variation of equilibrium phase of TiC-Cl2-O2 system with partial pressure of oxychloride

    图  3  TiC-2.04CaO-0.87MgO-nCl2反应体系平衡物相含量随Cl2/TiC摩尔比变化规律

    Figure  3.  The variation of equilibrium phase content of TiC-2.04CaO-0.87MgO-nCl2 reaction system with Cl2/TiC molar ratios

    图  4  TiC-2.04CaO-0.87MgO-2.00 Cl2-mO2体系平衡物相含量随O2/TiC摩尔比变化规律

    Figure  4.  The variation of equilibrium phase content in TiC-2.04CaO-0.87MgO-2.00 Cl2-mO2 system with O2/TiC molar ratios

    图  5  TiC-Cl2-O2体系三元平衡相图

    Figure  5.  Ternary equilibrium phase diagram of TiC-Cl2-O2 system

    图  6  TiC-2.04CaO-nCl2-0.25nO2体系平衡物相含量随Cl2含量变化规律

    Figure  6.  The variation of equilibrium phase contents with Cl2 content in TiC-2.04CaO-nCl2-0.25nO2 system

    图  7  0.07TiC-0.33CaO-nCl2反应体系平衡物相含量随Cl2含量变化规律

    Figure  7.  The variation of equilibrium phase content of 0.07TiC-0.33CaO-nCl2 reaction system with Cl2 contents

    图  8  0.07TiC-0.14CaO-nCl2反应体系平衡物相含量随Cl2含量变化规律

    Figure  8.  The variation of equilibrium phase content of 0.07TiC-0.14CaO-nCl2 reaction system with Cl2 contents

    图  9  碳化渣加氧氯化不同反应阶段TiC质量分数、TiC氯化率和CaO氯化率随Cl2含量变化规律

    Figure  9.  The variation of TiC mass fraction, TiC chlorination rate, and CaO chlorination rate with Cl2 contents during different reaction stages of carbonized slag oxychlorination

    图  10  碳化渣直接氯化不同反应阶段TiC质量分数、TiC氯化率和CaO氯化率随Cl2含量变化规律

    Figure  10.  The variation of TiC mass fraction, TiC chlorination rate, and CaO chlorination rate with Cl2 contents during different reaction stages of direct chlorination of carbonized slag

    表  1  碳化渣的主要成分及含量

    Table  1.   Main components and content of carbonized slag

    成分质量分数/%摩尔数/mol*摩尔比*
    TiC13.800.231.00
    CaO26.570.472.04
    MgO8.090.200.87
    SiO225.250.421.83
    Al2O314.230.140.61
    MnO0.550.010.04
    Fe1.000.020.09
    V2O50.240.010.04
    TiO23.600.050.22
    FeO2.000.030.13
    C4.000.331.43
    其它0.67
    *:以100 g碳化渣计的摩尔数和以TiC=1.00 mol为基折算的摩尔比。
    下载: 导出CSV

    表  2  TiC-2.04CaO-0.87MgO-nCl2-mO2反应体系中各物相氯化率随O2含量变化规律

    Table  2.   The variation of chlorination rates of various phases with O2 contents in the TiC-2.04CaO-0.87MgO-nCl2-mO2 reaction system

    Cl2含量nTiC氯化率/%CaO氯化率/%最优O2/TiC 摩尔比Cl2/O2摩尔比
    未引入氧气引入氧气氯化率变化情况未引入氧气引入氧气氯化率变化情况
    1.8051.35100.00+48.6550.330.00−50.331.101.64
    1.9054.20100.00+45.8053.120.00−53.121.101.73
    2.0057.06100.00+42.9455.880.49−55.391.002.00
    2.1059.91100.00+40.0958.825.39−53.431.002.10
    2.2062.76100.00+37.2461.2710.29−50.980.902.44
    2.3065.62100.00+34.3864.2215.20−49.020.902.56
    2.4068.47100.00+31.5367.1620.10−47.060.803.00
    2.5071.32100.00+28.6870.1025.00−45.100.803.13
    2.7077.03100.00+22.9775.4934.80−40.690.703.86
    2.9082.74100.00+17.2680.8844.61−36.270.604.83
    3.1088.44100.00+11.5686.7654.41−32.350.506.20
    3.3094.15100.00+5.8592.1664.22−27.940.408.25
    3.50100.00100.00+0.0098.0474.02−24.020.3011.67
    下载: 导出CSV

    表  3  碳化渣加氧氯化不同阶段组分含量变化(初始渣质量以100 g计)

    Table  3.   Changes in component of carbonized slag during different stages of oxychlorination. (The initial slag mass is calculated as 100 g)

    氯化反
    应阶段
    Cl2/O2
    摩尔比
    混合气体
    中Cl2含量/
    mol
    TiC初
    始量/g
    TiC初始
    量/mol
    TiC残
    余量/g
    TiC残余
    量/mol
    CaO初
    始量/g
    CaO初始
    量/mol
    CaO残
    余量/g
    CaO残余
    量/mol
    其他组分
    含量/g
    TiC质量
    分数/%
    TiC总氯
    化率%
    CaO总氯
    化率/%
    第一阶段4.0013.800.233.930.0726.570.4718.760.3359.634.0271.5029.39
    第二阶段



    0.003.930.073.930.0718.760.3318.760.3359.634.0271.5029.39
    0.023.590.0618.110.323.6773.9931.84
    0.062.990.0516.810.303.0578.3336.73
    0.102.400.0415.350.272.4182.6142.23
    0.141.800.0314.210.251.8086.9646.52
    下载: 导出CSV

    表  4  碳化渣直接氯化不同阶段组分含量变化(初始渣质量以100 g计)

    Table  4.   Changes in composition and content of slag before and after the first stage chlorination reaction without introducing oxygen. (The initial slag mass is calculated as 100 g)

    氯化反
    应阶段
    混合气体中
    Cl2含量/mol
    TiC初
    始量/g
    TiC初始
    量/mol
    TiC残
    余量/g
    TiC残余
    量/mol
    CaO初
    始量/g
    CaO初始
    量/mol
    CaO残
    余量/g
    CaO残余
    量/mol
    其他组分
    含量/g
    TiC质量
    分数/%
    TiC总氯
    化率%
    CaO总
    氯化率/%
    第一阶段13.800.233.930.0726.570.477.940.1459.633.6371.5070.11
    第二阶段0.003.930.073.930.077.940.147.940.1459.633.6371.5070.11
    0.023.590.067.370.133.3173.9972.26
    0.062.990.056.240.112.7578.3376.51
    0.102.400.044.540.082.1882.6182.91
    0.141.800.033.400.061.6386.9687.20
    下载: 导出CSV
  • [1] Ahmadi E, Rezan S A, Baharun N, et al. Chlorination kinetics of titanium nitride for production of titanium tetrachloride from nitrided ilmenite[J]. Metallurgical and Materials Transactions B, 2017,48(5):2354−2366. doi: 10.1007/s11663-017-1011-z
    [2] Yang F, Wen L Y, Yue D, et al. Study on reaction behaviors and mechanisms of rutile TiO2 with different carbon addition in fluidized chlorination[J]. Journal of Materials Research and Technology, 2022,18:1205−1217. doi: 10.1016/j.jmrt.2022.02.131
    [3] Zhu F X, Qiu K H, Sun Z H. Preparation of titanium from TiCl4 in a molten fluoride-chloride salt[J]. Electrochemistry, 2017,85(11):715−720. doi: 10.5796/electrochemistry.85.715
    [4] Shi J J, Qiu Y C, Yu B, et al. Titanium extraction from titania-bearing blast furnace slag: A review[J]. American Journal of Respiratory and Critical Care Medicine, 2022,74(2):654−667.
    [5] Qin J, Wang Y, You Z X, et al. Carbonization and nitridation of vanadium–bearing titanomagnetite during carbothermal reduction with coal[J]. Journal of Materials Research and Technology, 2020,9(3):4272−4282. doi: 10.1016/j.jmrt.2020.02.053
    [6] Peng Yi. Thermodynamic analysis on the selective chlorination of carbonized Pangang BF slag at low temperature[J]. Titanium Industry Progress, 2005,6:45−49. (彭毅. 碳化攀钢高炉渣低温选择氯化的热力学分析[J]. 钛工业进展, 2005,6:45−49. doi: 10.3969/j.issn.1009-9964.2005.01.013

    Peng Yi. Thermodynamic analysis on the selective chlorination of carbonized Pangang BF slag at low temperature [J]. Titanium Industry Progress, 2005, 6: 45-49. doi: 10.3969/j.issn.1009-9964.2005.01.013
    [7] 刘晓华. 改性含钛高炉渣高温碳化低温氯化的研究[D]. 沈阳: 东北大学, 2009.

    Liu Xiaohua. Study on high-temperature carbonization and low-temperature chlorination on modified titanium bearing blast furnace slag[D]. Shengyang: Northeastern University, 2009.
    [8] Taki T, Komoto S, Otomura K, et al. Chloride pyrometallurgy of uranium ore (II)[J]. Journal of Nuclear Science and Technology, 1996,33(4):327−332. doi: 10.1080/18811248.1996.9731912
    [9] Hiroyuki M, Fumitaka T. Chlorination kinetics of ZnO with Ar-Cl2-O2 gas and the effect of oxychloride formation[J]. Metallurgical and Materials Transactions B, 2006,37(3):413−420. doi: 10.1007/s11663-006-0026-7
    [10] Hiroyuki M, Tasuku H, Fumitaka T. Chlorination kinetics of ZnFe2O4 with Ar-Cl2-O2 gas[J]. Materials Transactions, 2006,47(10):2524−2532. doi: 10.2320/matertrans.47.2524
    [11] Jungshin K, Toru H O. Removal of iron from titanium ore by selective chlorination using TiCl4 under high oxygen chemical potential[J]. International Journal of Mineral Processing, 2016,149:111−118. doi: 10.1016/j.minpro.2016.02.014
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  197
  • HTML全文浏览量:  49
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-11
  • 网络出版日期:  2023-11-04
  • 刊出日期:  2023-10-31

目录

    /

    返回文章
    返回