留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

功率超声作用下钢液中空化泡尺寸的演变特性

王顺 陈敏 郭庆 程伟浩

王顺, 陈敏, 郭庆, 程伟浩. 功率超声作用下钢液中空化泡尺寸的演变特性[J]. 钢铁钒钛, 2023, 44(5): 122-129. doi: 10.7513/j.issn.1004-7638.2023.05.019
引用本文: 王顺, 陈敏, 郭庆, 程伟浩. 功率超声作用下钢液中空化泡尺寸的演变特性[J]. 钢铁钒钛, 2023, 44(5): 122-129. doi: 10.7513/j.issn.1004-7638.2023.05.019
Wang Shun, Chen Min, Guo Qing, Cheng Weihao. Evolution characteristics of cavitation bubble size in liquid steel under power ultrasound[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(5): 122-129. doi: 10.7513/j.issn.1004-7638.2023.05.019
Citation: Wang Shun, Chen Min, Guo Qing, Cheng Weihao. Evolution characteristics of cavitation bubble size in liquid steel under power ultrasound[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(5): 122-129. doi: 10.7513/j.issn.1004-7638.2023.05.019

功率超声作用下钢液中空化泡尺寸的演变特性

doi: 10.7513/j.issn.1004-7638.2023.05.019
基金项目: 国家自然科学基金资助项目(52174301,51974080)。
详细信息
    作者简介:

    王顺,1998年出生,男,安徽淮南人,硕士研究生,主要从事炉外精炼相关研究,E-mail: wangshun1029@163.com

    通讯作者:

    陈敏,1969年出生,男,教授,博士生导师,E-mail: chenm@smm.neu.edu.cn

  • 中图分类号: TF769

Evolution characteristics of cavitation bubble size in liquid steel under power ultrasound

  • 摘要: 利用四阶龙格库塔法,通过Matlab软件求解功率超声作用周期T与空化泡半径R之间的函数关系,研究了声压幅值、频率、初始平衡半径和气体多变指数对钢液中空化泡尺寸的影响。结果表明,1~2P0范围内产生稳态空化,频率和初始平衡半径的增加均使空化泡的峰值半径增大,初始平衡半径由5 μm增加至50 μm时,空化泡的峰值半径分别增加了0.35 μm和90.75 μm;频率由20 kHz增加至80 kHz时,空化泡的峰值半径仅增加了0.84 μm。3~100P0范围内产生瞬态空化,初始平衡半径由5 μm增加至20 μm时,空化泡的峰值半径由423.01 μm增加至896.12 μm,而初始平衡半径增加至50 μm时,空化泡的峰值半径减小为544.16 μm;频率为20 kHz时,空化泡经历2次膨胀与收缩过程后崩溃,空化泡的峰值半径为488.05 μm。气体多变指数对稳态和瞬态空化条件下的空化效应影响较小,当气体多变指数由1增加至1.65时,空化泡峰值半径分别减小了1.6 μm和0.35 μm。
  • 图  1  1~2P0范围内声压幅值对钢液中空化泡半径的影响

    (a)R/R0随周期T的变化;(b)空化泡的峰值半径

    Figure  1.  Influence of sound pressure amplitude on cavitation bubble radius in the liquid steel in the range of 1~2P0

    图  2  3~100P0范围内声压幅值对钢液中空化泡半径的影响

    (a)R/R0随周期T的变化;(b)空化泡的峰值半径

    Figure  2.  Influence of sound pressure amplitude on cavitation bubble radius in the liquid steel in the range of 3~100P0

    图  3  5~50 µm范围内初始平衡半径对钢液中空化泡半径的影响

    (a)R/R0随周期T的变化;(b)空化泡的峰值半径

    Figure  3.  Influence of initial equilibrium radius on cavitation bubble radius in the molten steel in the range of 5~50 µm

    图  4  20~80 kHz范围内频率对空化泡半径的影响

    (a)R/R0随周期T的变化;(b)空化泡的峰值半径

    Figure  4.  Influence of frequency on cavitation bubble radius in the range of 20~80 kHz

    图  5  气体多变指数对空化泡半径的影响

    (a)R/R0随周期T的变化;(b)空化泡的峰值半径

    Figure  5.  Influence of gas multiplicity index on cavitation bubble radius

    图  6  5~50 µm范围内初始平衡半径对钢液中空化泡半径的影响

    (a)R/R0随周期T的变化;(b)空化泡的峰值半径

    Figure  6.  Influence of initial equilibrium radius on cavitation bubble radius in the molten steel in the range of 5~50 µm

    图  7  20~80 kHz范围内频率对空化泡半径的影响

    (a)R/R0随周期T的变化;(b)空化泡的峰值半径

    Figure  7.  Influence of frequency on cavitation bubble radius in the range of 20~80 kHz

    图  8  气体多变指数对空化泡半径的影响

    (a)R/R0随周期T的变化;(b)空化泡的峰值半径

    Figure  8.  Influence of gas multiplicity index on cavitation bubble radius

  • [1] Xu Wenlin, He Yufang, Wang Yaqiong. Modeling and simulation of bubble motion caused by ultrasound[J]. Journal of Yangzhou University, 2005,8(1):55−59. (许文林, 何玉芳, 王雅琼. 超声空化泡运动方程的求解及过程模拟[J]. 扬州大学学报:自然科学版, 2005,8(1):55−59.

    Xu Wenlin, He Yufang, Wang Yaqiong. Modeling and simulation of bubble motion caused by ultrasound[J]. Journalof Yangzhou University, 2005, 8(1): 55-59.
    [2] Wang Jie. Theoretical research of ultrasonic cavitation bubble dynamic equation[J]. Value Engineering, 2010,29(34):38−39. (王捷. 超声空化泡运动方程的理论推导[J]. 价值工程, 2010,29(34):38−39.

    Wang Jie. Theoretical research of ultrasonic cavitation bubble dynamic equation[J]. Value Engineering, 2010, 29(34): 38-39.
    [3] Rayleigh J W. On the pressure developed in aliquid during the collapse of a special cavity[J]. Philosophical Magazine, 1917,34(200):94−98.
    [4] 沈阳. 单一超声空化泡的理论与实验研究及声场内空泡分布标定[D]. 沈阳: 东北大学, 2019.

    Shen Yang. Theoretical & experimental study of a single bubble cavitation aced population of cavitation bubbles in ultrasound field[D]. Shenyang: Northeastern University, 2019.
    [5] 李林. 超声场下空化泡运动的数值模拟和超声强化传质研究[D]. 成都: 四川大学, 2006.

    Li Lin. Numercial simulation on the motion equation of cavitation bubble and the enhancement of mass transfer due toultrasonic[D]. Chengdu: Sichuan University, 2006.
    [6] Kang Shumei, Shen Minggang, Li Chengwei, et al. Behavior of inclusion removal in ladlere fining model by ultrasonic[J]. Iron and Steel, 2012,47(9):30−34. (亢淑梅, 沈明钢, 李成威, 等. 超声波钢包精炼水模夹杂物行为[J]. 钢铁, 2012,47(9):30−34.

    Kang Shumei, Shen Minggang, Li Chengwei, et al. Behavior of inclusion removal in ladlere fining model by ultrasonic[J]. Iron and Steel, 2012, 47(9): 30-34.
    [7] Yasui K. Acoustic cavitation and bubble dynamics[M]. Cham, Switzerland: Springer, 2018.
    [8] Zhang Ying, Wu Wenhua, Wang Jianyuan. Mechanism of effect of stable cavitation on dendrite growth in ultrasonic field[J]. Acta Physica Sinica, 2022,71(24):244303. (张颖, 吴文华, 王建元, 等. 超声场中气泡稳态空化对枝晶生长过程的作用机制[J]. 物理学报, 2022,71(24):244303. doi: 10.7498/aps.71.20221101

    Zhang Ying, Wu Wenhua, Wang Jianyuan. Mechanism of effect of stable cavitation on dendrite growth in ultrasonic field[J]. Acta Physica Sinica, 2022, 71(24): 244303. doi: 10.7498/aps.71.20221101
    [9] Yang Ping. Fast digital simulation based on fourth order Runge Kutta method.[J]. Computer Simulation, 1987,(3):42−44. (杨平. 基于四阶龙格-库塔法的快速数字仿真[J]. 计算机仿真, 1987,(3):42−44.

    Yang Ping. Fast digital simulation based on fourth order Runge Kutta method. [J]. Computer Simulation, 1987(3): 42-44.
    [10] Kong Wei, Cang Daqiang, Wang Wenbo. Simulation of evolution process of ultrasonic-cavitation bubble in molten steel[J]. Science Technology and Engineering, 2010,10(35):8696−8701. (孔为, 苍大强, 王文波. 钢液中超声空化泡运动过程模拟[J]. 科学技术与工程, 2010,10(35):8696−8701. doi: 10.3969/j.issn.1671-1815.2010.35.013

    Kong Wei, Cang Daqiang, Wang Wenbo. Simulation of evolution process of ultrasonic-cavitation bubble in molten steel[J]. Science Technology and Engineering, 2010, 10(35): 8696-8701. doi: 10.3969/j.issn.1671-1815.2010.35.013
    [11] 魏瑞瑞. 超声波辅助铁酸钙生成及结晶基础研究[D]. 重庆: 重庆大学, 2019.

    Wei Ruirui. Fundamental study on the formation and crystallization of calcium ferrite assisted by ultrasonic wave[D]. Chongqing: Chongqing University, 2019.
  • 加载中
图(8)
计量
  • 文章访问数:  152
  • HTML全文浏览量:  28
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-15
  • 网络出版日期:  2023-11-04
  • 刊出日期:  2023-10-31

目录

    /

    返回文章
    返回