中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铸造烧结法制备TiC颗粒增强铁基复合材料的磨损性能

孙雪莉 王帅 刘晨宇 付志强 郑开宏 王娟 柯志敏

孙雪莉, 王帅, 刘晨宇, 付志强, 郑开宏, 王娟, 柯志敏. 铸造烧结法制备TiC颗粒增强铁基复合材料的磨损性能[J]. 钢铁钒钛, 2023, 44(6): 70-75. doi: 10.7513/j.issn.1004-7638.2023.06.010
引用本文: 孙雪莉, 王帅, 刘晨宇, 付志强, 郑开宏, 王娟, 柯志敏. 铸造烧结法制备TiC颗粒增强铁基复合材料的磨损性能[J]. 钢铁钒钛, 2023, 44(6): 70-75. doi: 10.7513/j.issn.1004-7638.2023.06.010
Sun Xueli, Wang Shuai, Liu Chenyu, Fu Zhiqiang, Zheng Kaihong, Wang Juan, Ke Zhimin. Wear properties of TiC particle reinforced iron matrix composites prepared by casting sintering method[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(6): 70-75. doi: 10.7513/j.issn.1004-7638.2023.06.010
Citation: Sun Xueli, Wang Shuai, Liu Chenyu, Fu Zhiqiang, Zheng Kaihong, Wang Juan, Ke Zhimin. Wear properties of TiC particle reinforced iron matrix composites prepared by casting sintering method[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(6): 70-75. doi: 10.7513/j.issn.1004-7638.2023.06.010

铸造烧结法制备TiC颗粒增强铁基复合材料的磨损性能

doi: 10.7513/j.issn.1004-7638.2023.06.010
基金项目: 国家重点研发计划(2021YFB3701204);广东省科学院发展专项资金项目(2022GDASZH-2022010103);清远市科技计划项目(2023DZX013);广西科技重大专项(桂科AA23023017)。
详细信息
    作者简介:

    孙雪莉,1997年出生,女,汉族,山东临沂人,硕士研究生,主要从事钢铁耐磨蚀方面的研究,E-mail:1374367479@qq.com

    通讯作者:

    付志强,1970年出生,男,博士,教授,主要从事摩擦学、表面工程及功能材料研究,E-mail:fuzq@cugb.edu.cn

  • 中图分类号: TB331

Wear properties of TiC particle reinforced iron matrix composites prepared by casting sintering method

  • 摘要: 通过铸造烧结法制备TiC颗粒增强高铬铸铁基复合材料,采用EDS、SEM等检测手段研究增强颗粒对材料显微组织和磨损行为的影响规律。结果表明,与高铬铸铁相比,复合材料中由于TiC颗粒的存在使其洛氏硬度(HRC)从49提高到了60。在磨损过程中,高铬铸铁表面的M7C3型碳化物在磨粒的反复作用下出现了明显的裂纹,并逐渐向基体内扩展。破碎后的碳化物容易脱落,不能有效阻止磨粒在材料表面的犁削作用,加剧了材料的磨损。而在复合材料中,随着较软的基体相优先被磨料削除,会裸露出大量的TiC颗粒。这些表面凸起的TiC颗粒承担磨粒的主要破坏作用,从而有效保护基体材料。对比发现,在相同的磨损条件下,复合材料的耐磨性与高铬铸铁相比提高了1.95倍。
  • 图  1  三体磨损示意(单位:mm)

    Figure  1.  Schematic diagram of three-body wear

    图  2  试验钢的显微组织形貌

    Figure  2.  Microstructure of test steel

    图  3  试验钢的洛氏硬度

    Figure  3.  Rockwell hardness of the test steel

    图  4  试验钢的磨损性能

    Figure  4.  Wear properties of the two test steel samples

    图  5  试验钢的表面磨损形貌

    Figure  5.  Surface wear morphology of different experimental steel samples

    图  6  试验钢的截面磨损形貌

    Figure  6.  Cross-sectional wear morphology of different test steel samples

    表  1  高铬铸铁的化学成分

    Table  1.   Chemical composition of high chromium cast iron %

    CSiMnCrNiMoSPFe
    3.1~3.30.1~0.50.3~0.625~260.2~0.40.3~0.60.0210.023余量
    下载: 导出CSV

    表  2  试验钢组织中物相的EDS能谱

    Table  2.   EDS energy spectra of phase in the microstructure of test steel

    试验钢y/%
    CSiTiCrFe
    高铬铸铁136.0842.9820.94
    219.321.2410.0563.39
    336.2141.5421.77
    复合材料441.0556.681.211.06
    538.80.1853.384.273.37
    下载: 导出CSV
  • [1] Olejnik E, Szymanski L, Tokarski T, et al. Local composite reinforcements of TiC/FeMn type obtained in situ in steel castings[J]. Archives of Civil and Mechanical Engineering, 2019,19(4):997−1005. doi: 10.1016/j.acme.2019.05.004
    [2] Wang S, Li Y, Wang J, et al. Effect of sintering temperature on the microstructure and properties of Ti/W–C reinforced Fe-based composites[J]. Vacuum, 2021,194:110617. doi: 10.1016/j.vacuum.2021.110617
    [3] Yang Yi, Yang Haokun, He Qiang, et al. Effect of aging treatment on the mechanical and impact properties of solid soluted Fe-Mn-Al-C lightweight high manganese steel[J]. Materials Research and Application, 2023,17(2):303−309. (杨壹, 杨浩坤, 何强, 等. 时效热处理对Fe-Mn-Al-C轻质高锰钢拉伸和冲击性能的影响[J]. 材料研究与应用, 2023,17(2):303−309.

    Yang Yi, Yang Haokun, He Qiang, et al. Effect of aging treatment on the mechanical and impact properties of solid soluted Fe-Mn-Al-C lightweight high manganese steel[J]. Materials Research and Application, 2023, 17(2): 303-309.
    [4] He Qiang, Jie Xiaohua, Zheng Zhibin, et al. Effect of carbon content on microstructure and mechanical properties of medium chromium alloy steel[J]. Journal of Iron and Steel Research, 2023,35(5):586−594. (何强, 揭晓华, 郑志斌, 等. 碳含量对中铬合金钢组织与力学性能的影响[J]. 钢铁研究学报, 2023,35(5):586−594.

    He Qiang, Jie Xiaohua, Zheng Zhibin, et al. Effect of carbon content on microstructure and mechanical properties of medium chromium alloy steel[J]. Journal of Iron and Steel Research, 2023, 35(5): 586-594.
    [5] Dong Xiaorong, Zheng Zhibin, Long Jun, et al. Analysis of domestic patent technology of vanadium-containing cast wear-resistant steel materials[J]. Materials Research and Application, 2022,16(5):766−775. (董晓蓉, 郑志斌, 龙骏, 等. 含钒铸造耐磨钢铁材料国内专利技术分析[J]. 材料研究与应用, 2022,16(5):766−775.

    Dong Xiaorong, Zheng Zhibin, Long Jun, et al. Analysis of domestic patent technology of vanadium-containing cast wear-resistant steel materials[J]. Materials Research and Application, 2022, 16(5): 766-775.
    [6] Zheng Zhibin, Long Jun, Wang Yuhui, et al. Research progress of mechanical properties of twinning induced plasticity steel[J]. Journal of Iron and Steel Research, 2023,35(2):115−130. (郑志斌, 龙骏, 王玉辉, 等. 孪生诱发塑性钢力学性能的研究进展[J]. 钢铁研究学报, 2023,35(2):115−130.

    Zheng Zhibin, Long Jun, Wang Yuhui, et al. Research progress of mechanical properties of twinning induced plasticity steel[J]. Journal of Iron and Steel Research, 2023, 35(2): 115-130.
    [7] Huang L, Deng X, Li C, et al. Effect of TiC particles on three-body abrasive wear behaviour of low alloy abrasion-resistant steel[J]. Wear, 2019,434-435:202971. doi: 10.1016/j.wear.2019.202971
    [8] Huang L, Pan Y, Zhang J, et al. Densification, microstructure and mechanical performance of TiC/Fe composites by spark plasma sintering[J]. Journal of Materials Research and Technology, 2020,9(3):6116−6124. doi: 10.1016/j.jmrt.2020.04.014
    [9] Zhu M, Jiang Y, Sui Y, et al. Study on microstructure and abrasive wear properties of in-situ TiC reinforced high chromium cast iron matrix composite[J]. Materials Research Express, 2022,9(3):036517. doi: 10.1088/2053-1591/ac5b02
    [10] Wang S, Li Y, Wang J, et al. Effect of in-situ (Ti&W)C multiphase particles on three-body abrasive wear of high chromium cast iron[J]. Materials Chemistry and Physics, 2023,295:127161. doi: 10.1016/j.matchemphys.2022.127161
    [11] Zhong L, Wei J, Bai H, et al. Effects of soaking time on the microstructure and mechanical properties of Nb-NbC/Fe core–shell rod-reinforced cast-iron-matrix composite fabricated through two-step in situ solid-phase diffusion[J]. Journal of Materials Research and Technology, 2020,9(6):12308−12317. doi: 10.1016/j.jmrt.2020.08.095
    [12] Lee J, Lee D, Song M H, et al. In-situ synthesis of TiC/Fe alloy composites with high strength and hardness by reactive sintering[J]. Journal of Materials Science & Technology, 2018,34(8):1397−1404.
    [13] Wang Shuai, Zheng Zhibin, Li Yingmin, et al. Effect of W/Ti content on the microstructure and phase transformation of iron matrix composites[J]. Materials Research and Application, 2023,17(1):109−117. (王帅, 郑志斌, 李英民, 等. W/Ti含量对钢铁基复合材料微观组织和相变的影响规律[J]. 材料研究与应用, 2023,17(1):109−117.

    Wang Shuai, Zheng Zhibin, Li Yingmin, et al. Effect of W/Ti content on the microstructure and phase transformation of iron matrix composites[J]. Materials Research and Application, 2023, 17(1): 109-117.
    [14] Chen H, Lu Y, Sun Y, et al. Coarse TiC particles reinforced H13 steel matrix composites produced by laser cladding[J]. Surface and Coatings Technology, 2020,395:125867. doi: 10.1016/j.surfcoat.2020.125867
    [15] Liang Y, Zhao Q, Zhang Z, et al. Preparation and characterization of TiC particulate locally reinforced steel matrix composites from Cu–Ti–C system with various C particles[J]. Journal of Asian Ceramic Societies, 2018,2(3):281−288.
    [16] Jiang J, Li S, Zhang W, et al. In situ formed TiCx in high chromium white iron composites: Formation mechanism and influencing factors[J]. Journal of Alloys and Compounds, 2019,788:873−880. doi: 10.1016/j.jallcom.2019.02.292
    [17] Olejnik E, Szymański Ł, Batóg P, et al. TiC-FeCr local composite reinforcements obtained in situ in steel casting[J]. Journal of Materials Processing Technology, 2020,275:116157. doi: 10.1016/j.jmatprotec.2019.03.017
    [18] Wang Shuai, Li Yingmin, Zheng Zhibin, et al. Effect of in-situ (W&Ti)C complex particles on wear behavior of high chromium cast iron[J]. Iron Steel Vanadium Titanium, 2023,44(1):151−157. (王帅, 李英民, 郑志斌, 等. 原位(W&Ti)C复相颗粒对高铬铸铁磨损行为的影响规律[J]. 钢铁钒钛, 2023,44(1):151−157. doi: 10.7513/j.issn.1004-7638.2023.01.024

    Wang Shuai, Zheng Zhibin, Wang Juan, et al. Effect of in-situ (W&Ti)C complex particles on wear behavior of high chromium cast iron[J]. Iron Steel Vanadium Titanium, 2023, 44(1): 151-157. doi: 10.7513/j.issn.1004-7638.2023.01.024
    [19] Qiu F, Zhang H, Li C L, et al. Simultaneously enhanced strength and toughness of cast medium carbon steels matrix composites by trace nano-sized TiC particles[J]. Materials Science and Engineering:A, 2021,819:141485. doi: 10.1016/j.msea.2021.141485
    [20] Guan D, He X, Zhang R, et al. Tribological and corrosion properties of PM 316L matrix composites reinforced by in situ polymer-derived ceramics[J]. Vacuum, 2018,148:319−326. doi: 10.1016/j.vacuum.2017.12.003
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  446
  • HTML全文浏览量:  132
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-14
  • 网络出版日期:  2023-12-28
  • 刊出日期:  2023-12-28

目录

    /

    返回文章
    返回