中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

1800 MPa级超高强热成形钢组织性能演变及奥氏体化工艺制度研究

刘爽 陈慧琴 曹苗 车鑫 杨帆 冯毅

刘爽, 陈慧琴, 曹苗, 车鑫, 杨帆, 冯毅. 1800 MPa级超高强热成形钢组织性能演变及奥氏体化工艺制度研究[J]. 钢铁钒钛, 2023, 44(6): 133-138. doi: 10.7513/j.issn.1004-7638.2023.06.019
引用本文: 刘爽, 陈慧琴, 曹苗, 车鑫, 杨帆, 冯毅. 1800 MPa级超高强热成形钢组织性能演变及奥氏体化工艺制度研究[J]. 钢铁钒钛, 2023, 44(6): 133-138. doi: 10.7513/j.issn.1004-7638.2023.06.019
Liu Shuang, Chen Huiqin, Cao Miao, Che Xin, Yang Fan, Feng Yi. Study on microstructure evolution and austenitizing process of 1800 MPa grade ultra-high strength hot stamping steels[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(6): 133-138. doi: 10.7513/j.issn.1004-7638.2023.06.019
Citation: Liu Shuang, Chen Huiqin, Cao Miao, Che Xin, Yang Fan, Feng Yi. Study on microstructure evolution and austenitizing process of 1800 MPa grade ultra-high strength hot stamping steels[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(6): 133-138. doi: 10.7513/j.issn.1004-7638.2023.06.019

1800 MPa级超高强热成形钢组织性能演变及奥氏体化工艺制度研究

doi: 10.7513/j.issn.1004-7638.2023.06.019
基金项目: 山西省基础研究计划青年科学研究项目(202203021222210);山西省高等学校科技创新项目资助(2022L310)
详细信息
    作者简介:

    刘爽,1990年出生,男,博士,通讯作者,研究方向:先进高强钢成分设计及工艺研究,E-mail:liushuang@tyust.edu.cn

  • 中图分类号: TF76,TG156.31

Study on microstructure evolution and austenitizing process of 1800 MPa grade ultra-high strength hot stamping steels

  • 摘要: 对不同奥氏体化温度及保温时间条件下的1800 MPa级超高强热成形钢组织性能演变进行了试验研究,确定了最佳的热成形奥氏体化工艺制度。结果表明,当奥氏体化温度及保温时间分别达到840 ℃、3 min时,1800 MPa级超高强热成形钢淬火后的组织均为马氏体,且马氏体组织随着奥氏体化温度的升高及保温时间的增加逐渐粗大,抗拉强度逐渐下降。当奥氏体化温度为840 ℃时,抗拉强度、伸长率及强塑积分别可以达到1861.3 MPa、6.88%、12.81 GPa·%;当保温时间为3 min时,抗拉强度、伸长率及强塑积分别可以达到1851.28 MPa、6.84%、12.66 GPa·%。最佳奥氏体化工艺制度为:奥氏体化温度840 ℃,保温时间3 min。
  • 图  1  不同奥氏体化温度下热成形钢的淬火组织

    Figure  1.  Quenching microstructures under different austenitizing temperatures

    (a)810 ℃;(b)840 ℃;(c)870 ℃;(d)900 ℃;(e)930 ℃;(f)960 ℃;(g)990 ℃

    图  2  不同奥氏体化温度下热成形钢的淬火组织(SEM)

    Figure  2.  Quenching microstructures under different austenitizing temperatures

    (a)840 ℃;(b)870 ℃;(c)900 ℃;(d)930 ℃; (e)960 ℃;(f)990 ℃

    图  3  不同奥氏体化温度下热成形钢的力学性能变化

    Figure  3.  Changes of mechanical properties at different austenitizing temperatures

    图  4  不同保温时间下热成形钢的淬火组织

    Figure  4.  Quenching microstructures at different holding times

    (a)1 min;(b)3 min;(c)5 min;(d)7 min;(e)9 min

    图  5  不同保温时间下热成形钢的淬火组织(SEM)

    Figure  5.  Quenching microstructures at different holding times

    (a)3 min;(b)5 min;(c)7 min;(d)9 min

    图  6  不同保温时间下热成形钢的力学性能变化

    Figure  6.  Changes of mechanical properties at different holding times

    图  7  最佳工艺制度下超高强钢组织及EBSD表征

    (a)SEM 表征;(b)EBSD表征;(c)相邻晶粒取向差分布

    Figure  7.  Microstructure and EBSD analysis of the ultra-high strength steel with the optimum austenitizing process

    图  8  淬火后试样CSL晶界特征及占比

    (a)晶界分布;(b)重位点阵占比

    Figure  8.  Characteristics and proportion of the CSL grain boundary of the steel

    表  1  1800 MPa级热成形钢主要化学成分

    Table  1.   Main composition of 1800 MPa hot stamping steel %

    CMnSiAlBCrTiNb
    0.291.400.260.040.0030.250.0270.051
    下载: 导出CSV
  • [1] Zhang Y, Lai X, Zhu P. Lightweight design of automobile component using high strength steel based on dent resistance[J]. Materials & Design, 2006,27(1):64−68.
    [2] Li Jixiong , Wang Daoyong . Study on application of MSOT method for lightweight design of automobile body structure[J]. Advances in Mechanical Engineering, 2020, 12(10): 1-15.
    [3] Zheng Songlin. Lightweight design of automobile drive shaft based on the characteristics of low amplitude load strengthening[J]. Chinese Journal of Mechanical Engineering, 2011,24(6):1111. doi: 10.3901/CJME.2011.06.1111
    [4] Novotny S, Geiger M. Process design for hydroforming of lightweight metal sheets at elevated temperatures[J]. Journal of Materials Processing Tech, 2003,138(1-3):594−599. doi: 10.1016/S0924-0136(03)00042-6
    [5] Lechler J , Merklein M. Hot stamping of ultra high strength steels as a key technology for lightweight construction[C]// Materials Science & Technology Conference and Exhibition, MS&T'08. Germany: University Erlangen-Nuremberg, 2008.
    [6] Mori K I. New hot stamping processes of automobile lightweight ultra-high strength steel parts[J]. Journal of the Japan Society for Technology of Plasticity, 2012,53(613):98−102. doi: 10.9773/sosei.53.98
    [7] Xu Yunsong, Gong Yu, Du Hao, et al. A newly-designed hot stamping plus non-isothermal Q&P process to improve mechanical properties of commercial QP980 steel[J]. International Journal of Lightweight Materials and Manufacture, 2019,3(1):26−35.
    [8] Hu Ping , Liang Ying, He Bin. Hot stamping advanced manufacturing technology of lightweight car body[C]//The Formability of High-Strength Steel for Hot Stamping. Singapore: Springer, 2017: 165-192.
    [9] De Castro M R, Monteiro W A, Politano R. Enhancements on strength of body structure due to bake hardening effect on hot stamping steel[J]. The International Journal of Advanced Manufacturing Technology, 2019,100(1/4):771−782.
    [10] Scharifi E, Schade T, Ademaj A, et al. Characterization of mechanical properties, macroscopic deformation behavior and microstructure of functionally graded 22MnB5 steel[J]. Steel Research International, 2021,92(7):16.
    [11] Reitz A, Grydin O, Schaper M. Characterization of phase transformations during graded thermo-mechanical processing of press-hardening sheet steel 22MnB5[J]. Metallurgical and Materials Transactions A, 2020,51:5628−5638. doi: 10.1007/s11661-020-05976-x
    [12] Zhang Y, Wang W, Liu K, et al. Thermomechanical analysis on the frictional contact behavior of a high-strength steel 22MnB5–die steel H13 tribopair at 800 °C by experiment and finite-element simulation[C]//ARCHIVE Proceedings of the Institution of Mechanical Engineers Part J Journal of Engineering Tribology , 2021, (208-210): 1994-1996.
    [13] Kong Ling, Peng Yan. In situ observation on microstructure evolution of 22MnB5 in hot stamping process[J]. Metallurgical Research and Technology, 2019,116(2):209. doi: 10.1051/metal/2018082
    [14] Liu S, Long M, Zhang S, et al. Study on the prediction of tensile strength and phase transition for ultra-high strength hot stamping steel[J]. Journal of Materials Research and Technology, 2020,9(6):14244−14253. doi: 10.1016/j.jmrt.2020.10.043
    [15] Liu S, Ai S, Long M, et al. Evolution of microstructures and mechanical properties of Nb-V alloyed ultra-high strength hot stamping steel in austenitizing process[J]. Materials, 2022,15:8197. doi: 10.3390/ma15228197
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  254
  • HTML全文浏览量:  259
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-08
  • 网络出版日期:  2023-12-28
  • 刊出日期:  2023-12-28

目录

    /

    返回文章
    返回