中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CaF2在不同酸碱性CaO-Al2O3基保护渣中的作用研究

施怡 亓捷 刘承军 姜茂发

施怡, 亓捷, 刘承军, 姜茂发. CaF2在不同酸碱性CaO-Al2O3基保护渣中的作用研究[J]. 钢铁钒钛, 2023, 44(6): 139-148. doi: 10.7513/j.issn.1004-7638.2023.06.020
引用本文: 施怡, 亓捷, 刘承军, 姜茂发. CaF2在不同酸碱性CaO-Al2O3基保护渣中的作用研究[J]. 钢铁钒钛, 2023, 44(6): 139-148. doi: 10.7513/j.issn.1004-7638.2023.06.020
Shi Yi, Qi Jie, Liu Chengjun, Jiang Maofa. Study on the role of CaF2 in CaO-Al2O3-based mold fluxes with different acid-base property[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(6): 139-148. doi: 10.7513/j.issn.1004-7638.2023.06.020
Citation: Shi Yi, Qi Jie, Liu Chengjun, Jiang Maofa. Study on the role of CaF2 in CaO-Al2O3-based mold fluxes with different acid-base property[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(6): 139-148. doi: 10.7513/j.issn.1004-7638.2023.06.020

CaF2在不同酸碱性CaO-Al2O3基保护渣中的作用研究

doi: 10.7513/j.issn.1004-7638.2023.06.020
基金项目: 国家自然科学基金(U1908224,51904064)资助;中央高校基本科研业务专项资金(N2125013)资助。
详细信息
    作者简介:

    施怡,1997年出生,女,黑龙江哈尔滨人,硕士研究生,主要从事连铸保护渣设计及基础性能研究,E-mail:2861243592@qq.com

    通讯作者:

    亓捷,1987年出生,男,山东莱芜人,博士,副教授,主要从事特殊冶金渣系设计与熔体物理化学研究,E-mail:qij@smm.neu.edu.cn

  • 中图分类号: TF777

Study on the role of CaF2 in CaO-Al2O3-based mold fluxes with different acid-base property

  • 摘要: 采用新型CaO-Al2O3基结晶器保护渣进行高铝钢浇铸,可有效抑制钢液中Al与渣中组元的界面反应。但是,浇铸过程中仍存在着结晶性能强、传热不均等问题。助熔剂是调整熔渣理化性能的关键因素之一。基于此,系统研究了典型助熔剂CaF2对不同酸碱性CaO-Al2O3基保护渣微观结构、黏度及结晶物相的影响。结果表明,在近中性CaO-Al2O3基保护渣中加入CaF2后,析晶物相由Ca12Al14O33+Ca3Al2O6转变为Ca12Al14O32F2+LiAlO2+CaF2,LiAlO2的析出可导致转折点温度上升,升幅约175 ℃,熔渣高温段黏度基本保持不变。在偏碱性CaO-Al2O3基保护渣中加入CaF2后,析晶物相由Ca3Al2O6+CaO转变为Ca12Al14O32F2+LiAlO2+CaF2,单一CaO的过早析出得到有效抑制,转折点温度降低约70 ℃,高温段黏度明显减小。
  • 图  1  CaO-Al2O3二元相图

    Figure  1.  CaO-Al2O3 binary phase diagram

    图  2  CaO-Al2O3-Li2O液相线

    Figure  2.  CaO-Al2O3-Li2O liquidus diagram

    图  3  CaO-Al2O3-Li2O-CaF2液相线

    Figure  3.  CaO-Al2O3-Li2O-CaF2 liquidus diagram

    图  4  S1与S3渣试验曲线

    Figure  4.  Experimental curve of S1 and S3 slags

    图  5  不同温度下结晶物相的扫描电镜照片

    Figure  5.  SEM images of crystalline phases at different temperatures

    图  6  XRD分析结果

    Figure  6.  XRD analysis results

    图  7  S1与S3渣拉曼光谱曲线及拉曼光谱解谱

    Figure  7.  Raman spectra curves and solutions of S1 and S3 slags

    图  8  各结构单元的相对面积百分数

    Figure  8.  The relative area percentage of each structural unit

    图  9  S2与S4渣试验曲线

    Figure  9.  Experimental curve of S2 and S4 slags

    图  10  不同温度下结晶物相的扫描电镜照片

    Figure  10.  SEM images of crystalline phases at different temperatures

    图  11  XRD分析结果

    Figure  11.  XRD analysis results

    图  12  S2与S4渣拉曼光谱曲线及拉曼光谱解谱

    Figure  12.  Raman spectra curves and solutions of S2 and S4 slags

    图  13  各结构单元的相对面积百分数

    Figure  13.  The relative area percentage of each structural unit

    表  1  保护渣的化学成分(摩尔分数)

    Table  1.   Chemical compositions of mold fluxes (mole fraction) %

    序号CaOAl2O3Li2OCaF2C/A
    S159.832.281.86
    S263.528.582.23
    S359.832.28101.86
    S463.528.58102.23
    下载: 导出CSV

    表  2  拉曼光谱峰值分析

    Table  2.   Peak analysis of Raman spectra

    拉曼位移/cm−1振动方式参考文献
    530 ~550Al-O-Al键的拉伸振动[24-25]
    550~600[AlO6]9−键的拉伸振动[26-28]
    680~720Q2(Al)中Al-O键拉伸振动[29-30]
    750 ~790Q3(Al)中Al-O键拉伸振动[30-31]
    800~850Q4(Al)中Al-O键拉伸振动[31-32]
    下载: 导出CSV
  • [1] Han Wendian, Qiu Shengtao, Zhu Guoling. Development of free-fluorid mold powder[J]. Research on Iron and Steel, 2003,31(2):53−56. (韩文殿, 仇圣桃, 朱果灵. 无氟结晶器保护渣的发展[J]. 钢铁研究, 2003,31(2):53−56. doi: 10.3969/j.issn.1001-1447.2003.02.016

    Han Wendian, Qiu Shengtao, Zhu Guoling. Development of free-fluorid mold powder[J]. Research on Iron and Steel, 2003, 31(2): 53-56. doi: 10.3969/j.issn.1001-1447.2003.02.016
    [2] Song Tushun, Zhu Liguang, Wang Xingjuan, et al. Research of Q345B steel protective slag microstructure and the mineral composition[J]. Continuous Casting, 2017,42(5):29−32. (宋土顺, 朱立光, 王杏娟, 等. Q345B钢保护渣显微结构及矿相组成研究[J]. 连铸, 2017,42(5):29−32.

    Song Tushun, Zhu Liguang, Wang Xingjuan, et al. Research of Q345 B steel protective slag microstructure and the mineral composition[J]. Continuous Casting, 2017, 42(5): 29-32.
    [3] Zhu Liguang, Yuan Zhipeng, Xiao Pengcheng, et al. Research and optimization of mold flux for high speed continuous casting of low carbon steel thin slab[J]. Iron and Steel, 2020,55(11):65−73. (朱立光, 袁志鹏, 肖鹏程, 等. 低碳钢薄板坯高速连铸保护渣研究与优化[J]. 钢铁, 2020,55(11):65−73.

    Zhu Liguang, Yuan Zhipeng, Xiao Pengcheng, et al. Research and optimization of mold flux for high speed continuous casting of low carbon steel thin slab[J]. Iron and Steel, 2020, 55(11): 65-73.
    [4] Zhang Chen, Cai Dexiang. Investigation on development of low-Li2O mold fluxes used for high aluminum steel[J]. Steelmaking, 2017,33(3):51−55. (张晨, 蔡得祥. 高铝钢用低Li2O保护渣的开发研究[J]. 炼钢, 2017,33(3):51−55.

    Zhang Chen, Cai Dexiang. Investigation on development of low-Li2O mold fluxes used for high aluminum steel[J]. Steelmaking, 2017, 33(3): 51-55.
    [5] Yan X B, Yuan H Z, Zhang S D, et al. Effect of interfacial reaction between CaO–BaO–Al2O3-based mold fluxes and high-Mn-high-Al steels on fundamental properties and lubrication of mold flux[J]. Steel Research International, 2020,91(6):1900581-1900589. doi: 10.1002/srin.201900581
    [6] 吴婷. 低反应性连铸保护渣熔体的微结构特征及宏观性能研究[D]. 重庆: 重庆大学, 2017.

    Wu Ting. Study on microstructure and macroproperty of mould fluxes with low reactivity[D]. Chongqing: Chongqing University, 2017.
    [7] Ai Xingang, Han Dong, Li Shengli, et al. Production practice and prospect of external liquid mold flux in continuous casting[J]. Iron and Steel, 2019,54(8):132−136. (艾新港, 韩东, 李胜利, 等. 外加液态保护渣连铸生产实践与前景展望[J]. 钢铁, 2019,54(8):132−136.

    Ai Xingang, Han Dong, Li Shengli, et al. Production practice and prospect of external liquid mold flux in continuous casting[J]. Iron and Steel, 2019, 54(8): 132-136.
    [8] Dong J K, Park J H. Interfacial reaction between CaO-SiO2-MgO-Al2O3 flux and Fe-xMn-yAl (x=10 and 20 mass pct, y=1, 3, and 6 mass pct) steel at 1873 K (1600 °C)[J]. Metallurgical and Materials Transactions B, 2012,43(4):875−886. doi: 10.1007/s11663-012-9667-x
    [9] Wang W L, Xu H, Zhai B Y, et al. A review of the melt structure and crystallization behavior of non-reactive mold flux for the casting of advanced high-strength steels[J]. Steel Research International, 2022,93(3):2100073. doi: 10.1002/srin.202100073
    [10] Sarkar R, Li Z S. Isothermal and non-isothermal crystallization kinetics of mold fluxes used in continuous casting of steel: A review[J]. Steel Research International, 2021,52(3):1357−1378.
    [11] Mo Rongzheng, Zhang Lifeng, Ren Ying, et al. Review on effect of composition on viscosity of low-reactive mold flux for high-Al steel[J]. Journal of Iron and Steel Research, 2021,33(8):695−708. (莫嵘臻, 张立峰, 任英, 等. 高铝钢用低反应型保护渣成分对其黏度的影响[J]. 钢铁研究学报, 2021,33(8):695−708.

    Mo Rongzheng, Zhang Lifeng, Ren Ying, et al. Review on effect of composition on viscosity of low-reactive mold flux for high-Al steel[J]. Journal of Iron and Steel Research, 2021, 33(8): 695-708.
    [12] Zhu Liguang, Zhang Xiaoshi, Wang Xingjuan, et al. Analysis on melting characteristics of CaO-Al2O3 based special flux for high titanium welding wire steel[J]. China Metallurgy, 2020,30(10):9−16. (朱立光, 张晓仕, 王杏娟, 等. 高钛焊丝钢CaO-Al2O3基专用保护渣熔化特性分析[J]. 中国冶金, 2020,30(10):9−16.

    Zhu Liguang, Zhang Xiaoshi, Wang Xingjuan, et al. Analysis on melting characteristics of CaO-Al2O3 based special flux for high titanium welding wire steel[J]. China Metallurgy, 2020, 30(10): 9-16.
    [13] Shao H Q, Gao E Z, Wang W L, et al. Effect of fluorine and CaO/Al2O3 mass ratio on the viscosity and structure of CaO–Al2O3-based mold fluxes[J]. Journal of the American Ceramic Society, 2019,102(8):4440−4449. doi: 10.1111/jace.16322
    [14] Yang J, Zhang J, Ostrovski O, et al. Effects of fluorine on solidification, viscosity, structure, and heat transfer of CaO-Al2O3-based mold fluxes[J]. Metallurgical and Materials Transactions B, 2019,50(4):1766−1772. doi: 10.1007/s11663-019-01579-z
    [15] Yu Xiong, Wen Guanghua, Tang Ping, et al. Effect of F on physico-chemical properties of mold slag used for high-Al steel[J]. Chinese Journal of Process Engineering, 2010,10(6):1153−1157. (于雄, 文光华, 唐萍, 等. F-对高铝钢连铸保护渣理化性能的影响[J]. 过程工程学报, 2010,10(6):1153−1157.

    Yu Xiong, Wen Guanghua, Tang Ping, et al. Effect of F on physico-chemical properties of mold slag used for high-Al steel[J]. Chinese Journal of Process Engineering, 2010, 10(6): 1153-1157.
    [16] Wang Zhe, Tang Ping, Mi Xiaoxi, et al. Effect of w(CaF2) on crystallization properties of CaO-SiO2-Al2O3 based mold fluxes[J]. Iron and Steel, 2018,53(7):38−44. (王哲, 唐萍, 米晓希, 等. CaF2对CaO-SiO2-Al2O3渣系保护渣结晶行为的影响[J]. 钢铁, 2018,53(7):38−44.

    Wang Zhe, Tang Ping, Mi Xiaoxi, et al. Effect of w(CaF2) on crystallization properties of CaO-SiO2-Al2O3 based mold fluxes[J]. Iron and Steel, 2018, 53(7): 38-44.
    [17] 林超. 石煤改质转炉钢渣自粉化及提钒的基础研究[D]. 马鞍山: 安徽工业大学, 2018.

    Lin Chao. Study on pulverization and vanadium extraction of stone coal modified converter steel slag[D]. Ma, anshan: Anhui University of Technology, 2018.
    [18] 郭汉杰. 冶金物理化学教程[M]. 北京: 冶金工业出版社, 2004.

    Guo Hanjie. Tutorial of metallurgical physical chemistry[M]. Beijing: Metallurgical Industry Press, 2004.
    [19] Mills K C, Sridhar S. Viscosities of ironmaking and steelmaking slags[J]. Ironmaking and Steelmaking, 1999,26(4):262−268. doi: 10.1179/030192399677121
    [20] Schulz T, Lychatz B, Haustein N, et al. Structurally based assessment of the influence of fluorides on the characteristics of continuous casting powder slags[J]. MMTB, 2013,44(2):317−327. doi: 10.1007/s11663-013-9796-x
    [21] Li Z, You X, Li M, et al. Effect of substituting CaO with BaO and CaO/Al2O3 ratio on the viscosity of CaO–BaO–Al2O3–CaF2–Li2O mold flux system[J]. Metals, 2019,9(2):142. doi: 10.3390/met9020142
    [22] Shankar A, Görnerup M, Lahiri A. Estimation of viscosity for blast furnace type slags[J]. Ironmaking and Steelmaking, 2007,34:477−481. doi: 10.1179/174328107X17467
    [23] Li Chen, Qi Jie, Liu Chengjun, et al. Effect of fluxing agent on the properties of CaO-Al2O3 based mold flux[J]. Iron Steel Vanadium Titanium, 2021,42(4):124−130. (李晨, 亓捷, 刘承军, 等. 助熔剂对CaO-Al2O3基保护渣理化性能的影响[J]. 钢铁钒钛, 2021,42(4):124−130. doi: 10.7513/j.issn.1004-7638.2021.04.021

    Li Chen, Qi Jie, Liu Chengjun, et al. Effect of fluxing agent on the properties of CaO-Al2O3 based mold flux[J]. Iron Steel Vanadium Titanium, 2021, 42(4): 124-130. doi: 10.7513/j.issn.1004-7638.2021.04.021
    [24] Park J H, Min D J, Song H S. Structural investigation of CaO–Al2O3 and CaO–Al2O3–CaF2 slags via fourier transform infrared spectra[J]. ISIJ International, 2002,42(1):38−43. doi: 10.2355/isijinternational.42.38
    [25] Hyun K G, Sohn I. Effect of CaF2, B2O3 and the CaO/SiO2 mass ratio on the viscosity and structure of B2O3 ontaining calcium -ilicate-based melts[J]. Journal of the American Ceramic Society, 2019,102(11):6575−6590. doi: 10.1111/jace.16526
    [26] Porto S, Krishnan R S. Raman effect of corundum[J]. Journal of Chemical Physics, 1967,47(3):1009−1012. doi: 10.1063/1.1711980
    [27] Tarte P. Infra-red spectra of inorganic aluminates and characteristic vibrational frequencies of AlO4 tetrahedra and AlO6 octahedra[J]. Spectrochimica Acta Part A:Molecular Spectroscopy, 1967,23(7):2127−2143. doi: 10.1016/0584-8539(67)80100-4
    [28] Kiss A B, Keresztury G, Farkas L. Raman and ir spectra and structure of boehmite (γ-AlOOH). Evidence for the recently discarded D172h space group[J]. Spectrochimica Acta Part A:Molecular Spectroscopy, 1980,36(7):653−658. doi: 10.1016/0584-8539(80)80024-9
    [29] Wang Y, Zhang R, Zhao X, et al. Structural transformation of molten CaO–SiO2–Al2O3–FexO slags during secondary refining of steels[J]. ISIJ International, 2020,60(2):220−225. doi: 10.2355/isijinternational.ISIJINT-2019-418
    [30] Kim T S, Park J H. Structure-viscosity relationship of low-silica calcium aluminosilicate melts[J]. ISIJ International, 2014,54(9):2031−2038. doi: 10.2355/isijinternational.54.2031
    [31] Gao E Z, Wang W L, Zhang L. Effect of alkaline earth metal oxides on the viscosity and structure of the CaO-Al2O3 based mold flux for casting high-al steels[J]. Journal of Non-crystalline Solids, 2017,473:79−86. doi: 10.1016/j.jnoncrysol.2017.07.029
    [32] Kim G H, Sohn I. Effect of Al2O3 on the viscosity and structure of calcium silicate-based melts containing Na2O and CaF2[J]. Journal of Non-crystalline Solids, 2012,358(12-13):1530−1537. doi: 10.1016/j.jnoncrysol.2012.04.009
    [33] Zhang X B, Liu C J, Jiang M F. Effect of fluorine on melt structure for CaO-SiO2-CaF2 and CaO-Al2O3-CaF2 by molecular dynamics simulations[J]. ISIJ International, 2020,60(10):2176−2182. doi: 10.2355/isijinternational.ISIJINT-2020-002
    [34] Wang X J, Jin H, Zhu L G, et al. Effect of CaF2 on the viscosity and microstructure of CaO–SiO2–Al2O3 based continuous casting mold flux[J]. Metals, 2019,9(8):871. doi: 10.3390/met9080871
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  403
  • HTML全文浏览量:  117
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-30
  • 网络出版日期:  2023-12-28
  • 刊出日期:  2023-12-28

目录

    /

    返回文章
    返回